login
A303226
Number of minimal total dominating sets in the n-gear graph.
1
0, 6, 12, 6, 30, 30, 56, 110, 156, 306, 506, 870, 1560, 2652, 4692, 8190, 14280, 25122, 43890, 77006, 135056, 236682, 415380, 728462, 1278030, 2242506, 3934272, 6903756, 12113880, 21256710, 37301556, 65456190, 114864806, 201569006, 353722056, 620732310
OFFSET
1,2
COMMENTS
Sequence extrapolated to n=1 using recurrence. - Andrew Howroyd, Apr 20 2018
LINKS
Eric Weisstein's World of Mathematics, Gear Graph
Eric Weisstein's World of Mathematics, Total Dominating Set
FORMULA
From Andrew Howroyd, Apr 20 2018: (Start)
a(n) = a(n-1) + 2*a(n-2) + a(n-3) - 3*a(n-4) - a(n-5) - a(n-6) + a(n-9) for n > 9.
G.f.: 2*x^2*(3 + 3*x - 9*x^2 - 3*x^3 - 3*x^4 + x^5 + 6*x^7)/((1 - 2*x + x^2 - x^3)*(1 + x - x^3)*(1 - x^2 - x^3)).
(End)
MATHEMATICA
Table[RootSum[-1 - # + #^3 &, #^n &] + RootSum[-1 + # - 2 #^2 + #^3 &, #^n &] + 2 RootSum[-1 + #^2 + #^3 &, #^(n + 2) (1 + #) &], {n, 20}]
LinearRecurrence[{1, 2, 1, -3, -1, -1, 0, 0, 1}, {0, 6, 12, 6, 30, 30, 56, 110, 156}, 20]
CoefficientList[Series[-2 x (3 + 3 x - 9 x^2 - 3 x^3 - 3 x^4 + x^5 + 6 x^7)/(-1 + x + 2 x^2 + x^3 - 3 x^4 - x^5 - x^6 + x^9), {x, 0, 20}], x]
PROG
(PARI) concat([0], Vec(2*(3 + 3*x - 9*x^2 - 3*x^3 - 3*x^4 + x^5 + 6*x^7)/((1 - 2*x + x^2 - x^3)*(1 + x - x^3)*(1 - x^2 - x^3)) + O(x^40))) \\ Andrew Howroyd, Apr 20 2018
CROSSREFS
Sequence in context: A343052 A050496 A262617 * A360877 A295122 A103698
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Apr 20 2018
EXTENSIONS
a(1)-a(2) and terms a(11) and beyond from Andrew Howroyd, Apr 20 2018
STATUS
approved