OFFSET
1,1
LINKS
Alois P. Heinz, Antidiagonals n = 1..18, flattened
EXAMPLE
Square array A(n,k) begins:
3, 8, 15, 20, 30, 40, 70, 60, 80, 90, ...
4, 9, 16, 24, 36, 48, 81, 72, 84, 126, ...
5, 10, 18, 27, 42, 54, 104, 110, 88, 165, ...
6, 12, 21, 28, 44, 56, 105, 112, 96, 256, ...
7, 14, 33, 32, 45, 64, 136, 114, 100, 258, ...
11, 19, 35, 52, 50, 78, 148, 128, 108, 266, ...
13, 22, 37, 55, 57, 92, 152, 130, 132, 296, ...
17, 25, 38, 74, 63, 95, 164, 135, 138, 304, ...
23, 26, 39, 77, 66, 99, 182, 147, 156, 322, ...
29, 31, 46, 85, 68, 102, 186, 154, 184, 369, ...
MAPLE
F:= combinat[fibonacci]: with(numtheory):
A:= proc() local h, p, q; p, q:= proc() [] end, 2;
proc(n, k)
while nops(p(k))<n do q:= q+1;
h:= nops(factorset(F(q)));
p(h):= [p(h)[], (q)]
od; p(k)[n]
end
end():
seq(seq(A(n, 1+d-n), n=1..d), d=1..12);
MATHEMATICA
nmax = 12; maxIndex = 200;
nu[n_] := nu[n] = PrimeNu[Fibonacci[n]];
col[k_] := Select[Range[maxIndex], nu[#] == k&];
T = Array[col, nmax];
A[n_, k_] := T[[k, n]];
Table[A[n-k+1, k], {n, 1, nmax}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Jan 04 2020 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Apr 19 2018
STATUS
approved