OFFSET
1,1
LINKS
Alois P. Heinz, Antidiagonals n = 1..16, flattened
EXAMPLE
Square array A(n,k) begins:
2, 21, 8, 6765, 2584, 144, ...
3, 34, 610, 196418, 701408733, 102334155, ...
5, 55, 987, 317811, 1134903170, 12586269025, ...
13, 377, 10946, 2178309, 365435296162, 10610209857723, ...
89, 4181, 75025, 32951280099, 6557470319842, 2111485077978050, ...
233, 17711, 3524578, 139583862445, 72723460248141, 7540113804746346429, ...
MAPLE
F:= combinat[fibonacci]: with(numtheory):
A:= proc() local h, p, q; p, q:= proc() [] end, 2;
proc(n, k)
while nops(p(k))<n do q:= q+1;
h:= bigomega(F(q));
p(h):= [p(h)[], F(q)]
od; p(k)[n]
end
end():
seq(seq(A(n, 1+d-n), n=1..d), d=1..10);
MATHEMATICA
A[n_, k_] := Module[{F = Fibonacci, h, p, q = 2}, p[_] = {}; While[ Length[p[k]] < n, q = q+1; h = PrimeOmega[F[q]]; p[h] = Append[p[h], F[q]]]; p[k][[n]]];
Table[Table[A[n, 1+d-n], {n, 1, d}], {d, 1, 10}] // Flatten (* Jean-François Alcover, Feb 05 2021, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Apr 19 2018
STATUS
approved