login
A303095
Balanced primes of order one ending in 9.
3
4409, 11299, 16619, 19739, 19949, 22259, 28069, 29269, 29599, 30059, 30449, 32479, 35129, 36229, 41479, 42209, 43189, 44519, 46889, 47869, 48259, 49069, 52529, 53939, 56149, 57119, 58129, 58979, 60509, 63559, 66809, 67169, 67619, 68099, 68699, 74489, 76579
OFFSET
1,1
EXAMPLE
4409 = (4397 + 4409 + 4421)/3 = 13227/3 and 4409 = 440*10 + 9.
MAPLE
p:=ithprime: a:=n->`if`(add(p(n-k), k=-1..1)=3*p(n) and modp(p(n), 10) = 9, p(n), NULL): seq(a(n), n=3..8000);
PROG
(GAP) P:=Filtered([1..78000], IsPrime);;
a:=Filtered(List(Filtered(List([0..Length(P)-3], k->List([1..3], j->P[j+k])), i->Sum(i)/3=i[2]), m->m[2]), l-> l mod 10=9);
CROSSREFS
Intersection of A006562 and A030433.
Sequence in context: A045013 A224687 A050664 * A039818 A116342 A035784
KEYWORD
nonn,base
AUTHOR
Muniru A Asiru, Apr 18 2018
STATUS
approved