%I #12 May 19 2018 04:30:12
%S 1,2,8,35,164,787,3857,19147,96004,485009,2465013,12589315,64555985,
%T 332158127,1714001409,8866730665,45968787524,238778897128,
%U 1242417984179,6474394344503,33784931507529,176515163156311,923265560495737,4834081924982522,25334170138318345,132883719945537587
%N a(n) = [x^n] (1/(1 - x))*Product_{k>=1} 1/(1 - x^k)^n.
%H Vaclav Kotesovec, <a href="/A303070/b303070.txt">Table of n, a(n) for n = 0..300</a>
%H <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%F a(n) = [x^n] (1/(1 - x))*exp(n*Sum_{k>=1} x^k/(k*(1 - x^k))).
%F a(n) = A210764(n,n) = Sum_{j=0..n} A144064(j,n).
%F a(n) ~ c * d^n / sqrt(n), where d = A270915 = 5.352701333486642687772415814165... and c = 0.4068869940800214657298372785820... - _Vaclav Kotesovec_, May 19 2018
%t Table[SeriesCoefficient[1/(1 - x) Product[1/(1 - x^k)^n, {k, 1, n}], {x, 0, n}], {n, 0, 25}]
%t Table[SeriesCoefficient[1/(1 - x) Exp[n Sum[x^k/(k (1 - x^k)), {k, 1, n}]], {x, 0, n}], {n, 0, 25}]
%Y Main diagonal of A210764.
%Y Cf. A000070, A000713, A008485, A144064, A210843.
%K nonn
%O 0,2
%A _Ilya Gutkovskiy_, Apr 18 2018