login
A302989
a(n) = n^n + n*n + n.
1
1, 3, 10, 39, 276, 3155, 46698, 823599, 16777288, 387420579, 10000000110, 285311670743, 8916100448412, 302875106592435, 11112006825558226, 437893890380859615, 18446744073709551888, 827240261886336764483, 39346408075296537575766, 1978419655660313589124359
OFFSET
0,2
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..386 (terms n=1..100 from Muniru A Asiru)
FORMULA
a(n) = A066141(n) * n + A000007(n).
From Alois P. Heinz, May 28 2018: (Start)
E.g.f.: 1/(1+LambertW(-x)) + exp(x)*(2*x+x^2).
a(n) = A001477(n) + A000290(n) + A000312(n). (End)
EXAMPLE
a(3) = 3^3 + 3*3 + 3 = 27 + 9 + 3 = 39.
MAPLE
seq(n^n+n*n+n, n=0..30); # Muniru A Asiru, May 27 2018
MATHEMATICA
Join[{1}, Table[n^n+n^2+n, {n, 20}]] (* Harvey P. Dale, Jun 13 2020 *)
PROG
(GAP) List([1..30], n->n^n+n*n+n); # Muniru A Asiru, May 27 2018
KEYWORD
nonn,easy
AUTHOR
Alex Ratushnyak, Apr 17 2018
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, May 28 2018
STATUS
approved