login
A302983
Number of ways to write n as x^2 + 2*y^2 + 2^z + 3*2^w with x,y,z,w nonnegative integers.
13
0, 0, 0, 1, 2, 2, 4, 5, 4, 5, 6, 4, 8, 8, 7, 12, 8, 6, 9, 9, 6, 13, 13, 8, 13, 12, 8, 13, 14, 11, 15, 17, 8, 14, 11, 11, 16, 17, 11, 17, 19, 8, 17, 19, 10, 19, 18, 12, 15, 17, 12, 20, 17, 13, 20, 18, 16, 24, 18, 15
OFFSET
1,5
COMMENTS
Conjecture: a(n) > 0 for all n > 3.
Clearly, a(2*n) > 0 if a(n) > 0. We have verified a(n) > 0 for all n = 4..6*10^9.
See also A302982 and A302984 for similar conjectures.
LINKS
Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190.
Zhi-Wei Sun, New conjectures on representations of integers (I), Nanjing Univ. J. Math. Biquarterly 34(2017), no. 2, 97-120.
Zhi-Wei Sun, Restricted sums of four squares, arXiv:1701.05868 [math.NT], 2017-2018.
EXAMPLE
a(4) = 1 with 4 = 0^2 + 2*0^2 + 2^0 + 3*2^0.
a(5) = 2 with 5 = 1^2 + 2*0^2 + 2^0 + 3*2^0 = 0^2 + 2*0^2 + 2^1 + 3*2^0.
MATHEMATICA
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
f[n_]:=f[n]=FactorInteger[n];
g[n_]:=g[n]=Sum[Boole[MemberQ[{5, 7}, Mod[Part[Part[f[n], i], 1], 8]]&&Mod[Part[Part[f[n], i], 2], 2]==1], {i, 1, Length[f[n]]}]==0;
QQ[n_]:=QQ[n]=(n==0)||(n>0&&g[n]);
tab={}; Do[r=0; Do[If[QQ[n-3*2^k-2^j], Do[If[SQ[n-3*2^k-2^j-2x^2], r=r+1], {x, 0, Sqrt[(n-3*2^k-2^j)/2]}]], {k, 0, Log[2, n/3]}, {j, 0, Log[2, Max[1, n-3*2^k]]}]; tab=Append[tab, r], {n, 1, 60}]; Print[tab]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Apr 16 2018
STATUS
approved