login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A302946 Number of minimal (and minimum) total dominating sets in the 2n-crossed prism graph. 2

%I

%S 4,36,196,1156,6724,39204,228484,1331716,7761796,45239076,263672644,

%T 1536796804,8957108164,52205852196,304278004996,1773462177796,

%U 10336495061764,60245508192804,351136554095044,2046573816377476,11928306344169796,69523264248641316

%N Number of minimal (and minimum) total dominating sets in the 2n-crossed prism graph.

%C Extended to a(1) using the formula/recurrence.

%C Since minimal and minimum total dominating sets are equivalent, the crossed prism graphs could be said to be "well totally dominated".

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CrossedPrismGraph.html">Crossed Prism Graph</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/TotalDominatingSet.html">Total Dominating Set</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Well-CoveredGraph.html">Well-Covered Graph</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (5,5,-1).

%F From _Andrew Howroyd_, Apr 16 2018: (Start)

%F a(n) = 5*a(n-1) + 5*a(n-2) - a(n-3).

%F G.f.: 4*x*(1 + 4*x - x^2)/((1 + x)*(1 - 6*x + x^2)).

%F a(n) = 4*A090390(n) = 4*A001333(n)^2. (End)

%F a(n) = 2*(chebyshevT(n,3) + (-1)^n). - _Eric W. Weisstein_, Apr 17 2018

%F a(n) = 4*(-1)^n*chebyshevT(n,i)^2, where i is the imaginary unit. - _Eric W. Weisstein_, Apr 17 2018

%t Table[2 (ChebyshevT[n, 3] + (-1)^n), {n, 20}]

%t Table[4 (-1)^n ChebyshevT[n, I]^2, {n, 20}]

%t LinearRecurrence[{5, 5, -1}, {4, 36, 196}, 20]

%t CoefficientList[Series[-4 (-1 - 4 x + x^2)/(1 - 5 x - 5 x^2 + x^3), {x, 0, 20}], x]

%o (PARI) Vec(4*(1 + 4*x - x^2)/((1 + x)*(1 - 6*x + x^2)) + O(x^30)) \\ _Andrew Howroyd_, Apr 16 2018

%o (PARI) a(n) = 2*(polchebyshev(n,1,3) + (-1)^n); \\ _Michel Marcus_, Apr 17 2018

%Y Cf. A001333, A090390, A287062, A291772, A302941.

%K nonn,easy

%O 1,1

%A _Eric W. Weisstein_, Apr 16 2018

%E a(1) and terms a(6) and beyond from _Andrew Howroyd_, Apr 16 2018

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 30 15:42 EDT 2020. Contains 333127 sequences. (Running on oeis4.)