login
A302942
a(n) = (2^n-1)^2*(2^n + 2).
1
0, 4, 54, 490, 4050, 32674, 261954, 2096770, 16776450, 134216194, 1073738754, 8589928450, 68719464450, 549755789314, 4398046461954, 35184371990530, 281474976514050, 2251799813292034, 18014398508695554, 144115188074283010, 1152921504603701250, 9223372036848484354
OFFSET
0,2
COMMENTS
a(n) is also the number of total dominating sets in the complete tripartite graph K_{n,n,n} for n > 0.
LINKS
Eric Weisstein's World of Mathematics, Complete Tripartite Graph
Eric Weisstein's World of Mathematics, Total Dominating Set
FORMULA
a(n) = A291703(n) for n > 1.
a(n) = 11*a(n-1) - 26*a(n-2) + 16*a(n-3).
G.f.: -2*x*(2 + 5*x)/(-1 + 11*x - 26*x^2 + 16*x^3).
MATHEMATICA
Table[(2^n - 1)^2 (2^n + 2), {n, 0, 30}]
LinearRecurrence[{11, -26, 16}, {4, 54, 490}, {0, 20}]
CoefficientList[Series[-((2 x (2 + 5 x))/(-1 + 11 x - 26 x^2 + 16 x^3)), {x, 0, 20}], x]
CROSSREFS
Cf. A291703.
Sequence in context: A001545 A208954 A269507 * A292305 A073863 A269480
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Apr 16 2018
STATUS
approved