login
A302920
Number of ways to write prime(n)^2 as x^2 + 2*y^2 + 3*2^z with x,y,z nonnegative integers.
15
1, 2, 3, 3, 4, 5, 4, 4, 3, 7, 6, 7, 6, 7, 8, 8, 7, 7, 6, 5, 7, 6, 8, 6, 8, 7, 9, 9, 7, 6, 6, 9, 7, 5, 8, 5, 9, 9, 10, 10, 9, 14, 7, 5, 11, 8, 8, 11, 10, 10, 12, 10, 6, 12, 11, 10, 8, 9, 10, 11, 8, 7, 15, 5, 11, 8, 14, 10, 7, 10
OFFSET
1,2
COMMENTS
Conjecture: a(n) > 0 for all n > 0. In other words, for any prime p there are nonnegative integers x, y and z such that x^2 + 2*y^2 + 3*2^z = p^2.
As mentioned in A301471, for the composite number m = 5884015571 = 7*17*49445509 there are no nonnegative integers x,y,z such that x^2 + 2*y^2 + 3*2^z = m^2.
LINKS
Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190.
Zhi-Wei Sun, Restricted sums of four squares, arXiv:1701.05868 [math.NT], 2017-2018.
EXAMPLE
a(1) = 1 with prime(1)^2 = 4 = 1^2 + 2*0^2 + 3*2^0.
a(2) = 2 with prime(2)^2 = 9 = 2^2 + 2*1^2 + 3*2^0 = 1^2 + 2*1^2 + 3*2^1.
MATHEMATICA
p[n_]:=p[n]=Prime[n];
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
f[n_]:=f[n]=FactorInteger[n];
g[n_]:=g[n]=Sum[Boole[(Mod[Part[Part[f[n], i], 1], 8]==5||Mod[Part[Part[f[n], i], 1], 8]==7)&&Mod[Part[Part[f[n], i], 2], 2]==1], {i, 1, Length[f[n]]}]==0;
QQ[n_]:=QQ[n]=(n==0)||(n>0&&g[n]);
tab={}; Do[r=0; Do[If[QQ[p[n]^2-3*2^k], Do[If[SQ[p[n]^2-3*2^k-2x^2], r=r+1], {x, 0, Sqrt[(p[n]^2-3*2^k)/2]}]], {k, 0, Log[2, p[n]^2/3]}]; tab=Append[tab, r], {n, 1, 70}]; Print[tab]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Apr 15 2018
STATUS
approved