login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A302827 a(n) = (n!)^2 * Sum_{k=1..n-1} 1/(k*(n-k))^2. 7
0, 0, 4, 18, 164, 2600, 64072, 2272032, 109735488, 6930012672, 554528623104, 54840436992000, 6568892183808000, 937223951339520000, 157057344897601536000, 30545188599606047539200, 6823697557721234964480000, 1735362552287102663393280000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..250

Eric Weisstein's World of Mathematics, Polylogarithm.

FORMULA

Recurrence: n*(2*n - 3)*a(n) = (n-1)*(6*n^3 - 25*n^2 + 33*n - 12)*a(n-1) - (n-2)^3*(6*n^3 - 29*n^2 + 42*n - 15)*a(n-2) + (n-3)^4*(n-2)^3*(2*n - 1)*a(n-3).

a(n) / (n!)^2 ~ Pi^2/(3*n^2) + 4*log(n)/n^3.

MAPLE

seq(factorial(n)^2*add(1/(k*(n-k))^2, k=1..n-1), n=0..20); # Muniru A Asiru, May 16 2018

MATHEMATICA

Table[n!^2*Sum[1/(k*(n-k))^2, {k, 1, n-1}], {n, 0, 20}]

CoefficientList[Series[PolyLog[2, x]^2, {x, 0, 20}], x] * Range[0, 20]!^2

PROG

(GAP) List([0..20], n->Factorial(n)^2*Sum([1..n-1], k->1/(k*(n-k))^2)); # Muniru A Asiru, May 16 2018

CROSSREFS

Cf. A052517, A304581, A304582, A304589, A304654.

Sequence in context: A054759 A286630 A222766 * A007153 A239839 A156870

Adjacent sequences:  A302824 A302825 A302826 * A302828 A302829 A302830

KEYWORD

nonn

AUTHOR

Vaclav Kotesovec, May 15 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 21 22:35 EST 2019. Contains 329383 sequences. (Running on oeis4.)