

A302720


Primes with index k >= 3 such that A288189(prime(k)) < A295185(prime(k)).


1



37, 53, 67, 97, 127, 137, 149, 157, 163, 191, 211, 223, 251, 257, 263, 277, 293, 307, 331, 337, 347, 367, 373, 397, 409, 419, 431, 457, 479, 487, 499, 521, 541, 547, 557, 563, 577, 587, 593, 613, 631, 641, 653, 673, 691, 701, 709, 719, 727, 751, 757, 769, 767, 797, 809, 821, 839, 853, 877, 907, 919, 929, 937, 953, 967, 977
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Let A,B,X represent A288189, A295185, A056240 respectively. A(p) is defined for every prime, B(p) is defined for primes >= 5. For a prime p with index k >= 3, A(p) = X(t)(rpt) for some multiple r of p, and some integer t such that rpt is prime. Then Sopfr(A(p)) = Sopfr(X(t))+(rpt) = t+rpt = rp. B(p) = X(g)(pg) where g = pq for some prime q = pg < p. q is the greatest prime divisor of A295185(p), so Sopfr(B(p)) = p. A(p) < B(p) if r and t exist such that (rpt) is prime, with X(t)(rpt) < X(g)(pg). A(p) is computed from the list of possible values in the list of inequalities: 3(2p3) < 2(3p2) < 5(2p5) < 2(5p2) < ... < X(g)(pg), selecting the first (smallest) value of (rpt) which is prime. If such a term exists and is < X(p)(pg), then A(p) < B(p) and p is in this sequence. Otherwise A(p) = B(p) = X(p)(pg) and p is in A299760.


LINKS

Table of n, a(n) for n=1..66.


EXAMPLE

k=12, prime(12)=37, A288189(37) = 213 < 248 = A295185(37). 37 is the smallest prime with this property, so a(1)=37.


PROG

(PARI) sopfr(k) = my(f=factor(k)); sum(j=1, #f~, f[j, 1]*f[j, 2]);
ap288189(p) = forcomposite(c=p, , if (!(sopfr(c) % p), return(c)));
ap295185(p) = forcomposite(c=p, , if (sopfr(c) == p, return(c)));
isokp(p) = (ap288189(p) < ap295185(p));
lista(nn) = forprime(p=5, nn, if (isokp(p), print1(p, ", "))); \\ Michel Marcus, May 13 2018


CROSSREFS

Cf. A288189, A295185, A299760, A299760.
Sequence in context: A092105 A101938 A060330 * A304358 A214755 A101940
Adjacent sequences: A302717 A302718 A302719 * A302721 A302722 A302723


KEYWORD

nonn


AUTHOR

David James Sycamore, Apr 12 2018


STATUS

approved



