login
a(n) is the smallest integer k such that A002828(k*n) = 3.
3

%I #30 Apr 16 2018 11:29:45

%S 3,3,1,3,6,1,2,3,3,3,1,1,6,1,2,3,3,3,1,6,1,1,2,1,3,3,1,2,6,1,2,3,1,3,

%T 1,3,6,1,2,3,3,1,1,1,6,1,2,1,3,3,1,6,6,1,2,1,1,3,1,2,6,1,2,3,3,1,1,3,

%U 1,1,2,3,3,3,1,1,1,1,2,6,3,3,1,1,6,1,2,1,3,3

%N a(n) is the smallest integer k such that A002828(k*n) = 3.

%C All terms are squarefree.

%F a(n^2) = 3.

%F Conjecture: a(n) <= 6.

%e a(2) = 3 because A002828(1*2) = 2, A002828(2*2) = 1,..., and 3 is the smallest multiplier leading to A002828(3*2) = 3.

%p A302694 := proc(n)

%p for k from 1 do

%p if A002828(k*n) = 3 then

%p return k;

%p end if;

%p end do:

%p end proc:

%p seq(A302694(n),n=1..100) ; # _R. J. Mathar_, Apr 16 2018

%o (PARI) istwo(n:int)=my(f); if(n<3, return(n>=0); ); f=factor(n>>valuation(n, 2)); for(i=1, #f[, 1], if(bitand(f[i, 2], 1)==1&&bitand(f[i, 1], 3)==3, return(0))); 1;

%o isthree(n:int)=my(tmp=valuation(n, 2)); bitand(tmp, 1)||bitand(n>>tmp, 7)!=7;

%o a002828(n)=if(issquare(n), !!n, if(istwo(n), 2, 4-isthree(n))); \\ A002828

%o a(n) = {my(m=1); while(a002828(m*n)!=3, m++); m; } \\ _Michel Marcus_, Apr 12 2018

%Y Cf. A002828, A005117, A007521, A007913, A302690.

%K nonn

%O 1,1

%A _Juri-Stepan Gerasimov_, Apr 11 2018

%E Name corrected and more terms added by _Michel Marcus_, Apr 12 2018