login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A302691 Number of broken alternating permutations of n things. 2
0, 0, 1, 2, 7, 26, 117, 594, 3407, 21682, 151853, 1160026, 9600567, 85566378, 817099909, 8322907298, 90074979487, 1032183177314, 12485056392285, 158964674218410, 2125201153260167, 29764791617545690, 435823661971532981, 6658895050949717362, 105979606291488794607 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

A permutation of {1,2,...,n} is said to be a "broken alternating permutation" if it is an alternating permutation (cf. A000111) except at one point. See El Hilany and Rau for precise definition and an explicit formula.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..484

D. Chebikin, Variations on descents and inversions in permutations, The Electronic J. of Combinatorics, 15 (2008), #R132.

Boulos El Hilany, Johannes Rau, Signed counts of real simple rational functions, arXiv:1712.05639 [math.AG], 2017, Proposition 6.4, p. 19.

FORMULA

a(n) ~ (4 - Pi) * 2^(n + 5/2) * n^(n + 3/2) / (exp(n) * Pi^(n + 3/2)). - Vaclav Kotesovec, Apr 14 2018

E.g.f.: (cos(x)-sin(x)+x-1)/(sin(x)-1). - Alois P. Heinz, Apr 16 2018

MAPLE

b:= proc(u, o, t) option remember;

      `if`(u+o=0, t, add(b(o+j-1, u-j, t), j=1..u)+

      `if`(t=0,      add(b(o-j, u-1+j, 1), j=1..o), 0))

    end:

a:= n-> b(n, 0$2):

seq(a(n), n=0..25);  # Alois P. Heinz, Apr 14 2018

# second Maple program:

egf:= (cos(x)-sin(x)+x-1)/(sin(x)-1):

a:= n-> n! * coeff(series(egf, x, n+1), x, n):

seq(a(n), n=0..25);  # Alois P. Heinz, Apr 16 2018

MATHEMATICA

b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, t, Sum[b[o + j - 1, u - j, t], {j, 1, u}] + If[t == 0, Sum[b[o - j, u - 1 + j, 1], {j, 1, o}], 0]];

a[n_] := b[n, 0, 0];

Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 19 2018, after Alois P. Heinz *)

CROSSREFS

Cf. A000111.

Column k=2 of A145876.

Sequence in context: A167551 A309396 A218670 * A081566 A213094 A141203

Adjacent sequences:  A302688 A302689 A302690 * A302692 A302693 A302694

KEYWORD

nonn

AUTHOR

Michael De Vlieger, Apr 11 2018

EXTENSIONS

a(13)-a(24) from Alois P. Heinz, Apr 14 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 25 19:14 EDT 2020. Contains 337344 sequences. (Running on oeis4.)