login
Number of nX4 0..1 arrays with every element equal to 1, 2, 3 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.
1

%I #4 Apr 11 2018 11:56:58

%S 2,45,164,934,4267,21949,106793,529984,2617548,12938179,63986777,

%T 316244862,1563877465,7731246308,38227036552,188999363652,

%U 934471931880,4620268994057,22843909984025,112946725741085,558440468796391

%N Number of nX4 0..1 arrays with every element equal to 1, 2, 3 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

%C Column 4 of A302670.

%H R. H. Hardin, <a href="/A302666/b302666.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 5*a(n-1) +12*a(n-2) -47*a(n-3) -101*a(n-4) +45*a(n-5) +381*a(n-6) +1292*a(n-7) +42*a(n-8) -5366*a(n-9) -7123*a(n-10) +6047*a(n-11) +22989*a(n-12) +15537*a(n-13) -22434*a(n-14) -51326*a(n-15) -29224*a(n-16) +38509*a(n-17) +82591*a(n-18) +44309*a(n-19) -44268*a(n-20) -87403*a(n-21) -42575*a(n-22) +28053*a(n-23) +52051*a(n-24) +24821*a(n-25) -7290*a(n-26) -13614*a(n-27) -6288*a(n-28) +190*a(n-29) +1280*a(n-30) +312*a(n-31) +20*a(n-32) for n>35

%e Some solutions for n=5

%e ..0..0..1..1. .0..0..1..1. .0..0..1..1. .0..0..0..1. .0..1..1..0

%e ..0..1..1..0. .0..0..0..0. .1..1..0..1. .1..1..1..1. .1..0..0..1

%e ..1..0..0..1. .1..1..1..1. .1..0..0..0. .1..0..0..0. .1..1..0..0

%e ..0..0..1..1. .0..0..0..0. .1..0..1..1. .0..1..1..0. .0..1..0..1

%e ..0..0..1..1. .1..1..1..0. .0..1..0..0. .1..1..0..0. .0..0..1..0

%Y Cf. A302670.

%K nonn

%O 1,1

%A _R. H. Hardin_, Apr 11 2018