login
Number of nX7 0..1 arrays with every element equal to 0, 1, 2 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.
1

%I #4 Apr 10 2018 19:12:31

%S 64,361,286,1051,5771,30536,159831,851266,4471550,23596546,124656067,

%T 657560234,3471424786,18324471950,96718090476,510535952469,

%U 2694818516619,14224352597910,75082608827730,396318019638887,2091938313164910

%N Number of nX7 0..1 arrays with every element equal to 0, 1, 2 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

%C Column 7 of A302623.

%H R. H. Hardin, <a href="/A302622/b302622.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 3*a(n-1) +8*a(n-2) +30*a(n-3) -30*a(n-4) -20*a(n-5) -315*a(n-6) -251*a(n-7) +113*a(n-8) +2023*a(n-9) +132*a(n-10) -209*a(n-11) -4888*a(n-12) +717*a(n-13) +3759*a(n-14) +13504*a(n-15) -13849*a(n-16) -1791*a(n-17) -18677*a(n-18) -7031*a(n-19) +3966*a(n-20) +53587*a(n-21) +541*a(n-22) -65*a(n-23) -35490*a(n-24) -28553*a(n-25) +22659*a(n-26) +13817*a(n-27) +6815*a(n-28) -11700*a(n-29) -17*a(n-30) -3101*a(n-31) +5982*a(n-32) -192*a(n-33) -1908*a(n-34) +432*a(n-35) for n>43

%e Some solutions for n=5

%e ..0..1..0..1..0..1..1. .0..1..0..1..0..1..0. .0..1..0..1..0..1..0

%e ..1..0..1..0..1..0..0. .0..1..1..1..0..1..0. .0..1..0..0..0..1..0

%e ..1..0..1..0..1..0..1. .0..1..1..1..0..1..0. .0..1..0..1..0..1..0

%e ..1..0..0..0..1..0..1. .0..1..0..1..0..1..1. .0..1..0..1..0..1..0

%e ..0..0..1..0..1..0..0. .0..1..0..1..0..0..1. .0..1..0..1..0..1..1

%Y Cf. A302623.

%K nonn

%O 1,1

%A _R. H. Hardin_, Apr 10 2018