Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 Nov 11 2021 15:32:08
%S 2,3,4,5,6,7,8,10,11,12,13,14,15,16,17,19,20,22,23,24,26,28,29,30,31,
%T 32,33,34,35,37,38,40,41,43,44,46,47,48,51,52,53,55,56,58,59,60,61,62,
%U 64,66,67,68,69,70,71,73,74,76,77,79,80,82,83,85,86,88,89
%N Numbers that are either prime or whose prime indices are pairwise coprime. Heinz numbers of integer partitions with pairwise coprime parts.
%C A prime index of n is a number m such that prime(m) divides n.
%C The Heinz number of an integer partition (y_1,..,y_k) is prime(y_1)*..*prime(y_k).
%H Charles R Greathouse IV, <a href="/A302569/b302569.txt">Table of n, a(n) for n = 1..10000</a>
%e Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of multiset systems.
%e 02: {{}}
%e 03: {{1}}
%e 04: {{},{}}
%e 05: {{2}}
%e 06: {{},{1}}
%e 07: {{1,1}}
%e 08: {{},{},{}}
%e 10: {{},{2}}
%e 11: {{3}}
%e 12: {{},{},{1}}
%e 13: {{1,2}}
%e 14: {{},{1,1}}
%e 15: {{1},{2}}
%e 16: {{},{},{},{}}
%e 17: {{4}}
%e 19: {{1,1,1}}
%e 20: {{},{},{2}}
%e 22: {{},{3}}
%e 23: {{2,2}}
%e 24: {{},{},{},{1}}
%e 26: {{},{1,2}}
%e 28: {{},{},{1,1}}
%e 29: {{1,3}}
%e 30: {{},{1},{2}}
%e 31: {{5}}
%e 32: {{},{},{},{},{}}
%t primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t Select[Range[200],Or[PrimeQ[#],CoprimeQ@@primeMS[#]]&]
%o (PARI) is(n)=if(n<9, return(n>1)); n>>=valuation(n,2); if(n<9, return(1)); my(f=factor(n)); if(vecmax(f[,2])>1, return(0)); if(#f~==1, return(1)); my(v=apply(primepi, f[,1]),P=vecprod(v)); for(i=1,#v, if(gcd(v[i],P/v[i])>1, return(0))); 1 \\ _Charles R Greathouse IV_, Nov 11 2021
%Y Subsequence of A122132.
%Y Cf. A000961, A001222, A005117, A007359, A007716, A051424, A056239, A076610, A101268, A275024, A302505, A302568.
%K nonn
%O 1,1
%A _Gus Wiseman_, Apr 10 2018