This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A302549 Expansion of Sum_{k>=1} (-1 + Product_{j>=1} 1/(1 - x^(k*j))^j). 3
 1, 4, 7, 17, 25, 58, 87, 177, 289, 528, 860, 1550, 2486, 4257, 6910, 11474, 18335, 29941, 47331, 75819, 118887, 187338, 290784, 452904, 696058, 1071234, 1632947, 2487504, 3759613, 5676424, 8512310, 12744903, 18975839, 28194293, 41691157, 61516394, 90379785 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Inverse Moebius transform of A000219. LINKS Alois P. Heinz, Table of n, a(n) for n = 1..10000 N. J. A. Sloane, Transforms Eric Weisstein's World of Mathematics, Plane Partition FORMULA G.f.: Sum_{k>=1} A000219(k)*x^k/(1 - x^k). a(n) = Sum_{d|n} A000219(d). MAPLE b:= proc(n) option remember; `if`(n=0, 1, add(       b(n-j)*numtheory[sigma][2](j), j=1..n)/n)     end: a:= n-> add(b(d), d=numtheory[divisors](n)): seq(a(n), n=1..40);  # Alois P. Heinz, Jun 21 2018 MATHEMATICA nmax = 37; Rest[CoefficientList[Series[Sum[-1 + Product[1/(1 - x^(k j))^j, {j, 1, nmax}], {k, 1, nmax}], {x, 0, nmax}], x]] b[n_] := b[n] = SeriesCoefficient[Product[1/(1 - x^k)^k , {k, 1, n}], {x, 0, n}]; a[n_] := a[n] = SeriesCoefficient[Sum[b[k] x^k/(1 - x^k), {k, 1, n}], {x, 0, n}]; Table[a[n], {n, 37}] b[0] = 1; b[n_] := b[n] = Sum[b[n - j] DivisorSigma[2, j], {j, n}]/n; a[n_] := a[n] = Sum[b[d], {d, Divisors[n]}]; Table[a[n], {n, 37}] CROSSREFS Cf. A000219, A047966, A047968, A300275, A302550. Sequence in context: A216552 A034736 A236564 * A023860 A009881 A049944 Adjacent sequences:  A302546 A302547 A302548 * A302550 A302551 A302552 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Jun 20 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 21 21:46 EDT 2019. Contains 328315 sequences. (Running on oeis4.)