This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A302548 Expansion of e.g.f. -log(1 + log(1 - x))/(1 + log(1 - x)). 1
 0, 1, 4, 22, 155, 1333, 13541, 158688, 2107682, 31291894, 513590170, 9234669420, 180534475832, 3812852144788, 86517295628188, 2099170738243328, 54233876338638192, 1486517654443664016, 43084555863325589232, 1316588795487600071904, 42306543064537291007424, 1426115146736949130634400 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS FORMULA a(n) = Sum_{k=1..n} |Stirling1(n,k)|*H(k)*k!, where H(k) is the k-th harmonic number. a(n) ~ sqrt(2*Pi) * log(n) * n^(n + 1/2) / (exp(1)-1)^(n+1). - Vaclav Kotesovec, Jun 23 2018 EXAMPLE E.g.f.: A(x) = x + 4*x^2/2! + 22*x^3/3! + 155*x^4/4! + 1333*x^5/5! + 13541*x^6/6! + ... MAPLE H:= proc(n) H(n):= 1/n +`if`(n=1, 0, H(n-1)) end: a:= n-> add(abs(Stirling1(n, k))*H(k)*k!, k=1..n): seq(a(n), n=0..23);  # Alois P. Heinz, Jun 21 2018 MATHEMATICA nmax = 21; CoefficientList[Series[-Log[1 + Log[1 - x]]/(1 + Log[1 - x]), {x, 0, nmax}], x] Range[0, nmax]! Table[Sum[Abs[StirlingS1[n, k]] HarmonicNumber[k] k!, {k, 0, n}], {n, 0, 21}] CROSSREFS Cf. A000254, A001008, A002805, A003713, A007840, A073596, A222058, A300490, A302547. Sequence in context: A049376 A083410 A295553 * A052772 A052650 A198053 Adjacent sequences:  A302545 A302546 A302547 * A302549 A302550 A302551 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Jun 20 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 22 12:10 EDT 2019. Contains 326177 sequences. (Running on oeis4.)