login
A302539
Squarefree numbers whose prime indices other than 1 are prime numbers.
2
1, 2, 3, 5, 6, 10, 11, 15, 17, 22, 30, 31, 33, 34, 41, 51, 55, 59, 62, 66, 67, 82, 83, 85, 93, 102, 109, 110, 118, 123, 127, 134, 155, 157, 165, 166, 170, 177, 179, 186, 187, 191, 201, 205, 211, 218, 241, 246, 249, 254, 255, 277, 283, 295, 310, 314, 327, 330
OFFSET
1,2
COMMENTS
A prime index of n is a number m such that prime(m) divides n.
LINKS
FORMULA
Sum_{n>=1} 1/a(n) = (3/2) * Product_{p in A006450} (1 + 1/p) converges since the sum of the reciprocals of A006450 converges. - Amiram Eldar, Feb 02 2021
EXAMPLE
Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of set systems.
01: {}
02: {{}}
03: {{1}}
05: {{2}}
06: {{},{1}}
10: {{},{2}}
11: {{3}}
15: {{1},{2}}
17: {{4}}
22: {{},{3}}
30: {{},{1},{2}}
31: {{5}}
33: {{1},{3}}
34: {{},{4}}
41: {{6}}
51: {{1},{4}}
55: {{2},{3}}
59: {{7}}
62: {{},{5}}
66: {{},{1},{3}}
MATHEMATICA
primeMS[n_]:=If[n===1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[400], SquareFreeQ[#]&&And@@(PrimeQ/@DeleteCases[primeMS[#], 1])&]
PROG
(PARI) ok(n)={issquarefree(n) && !#select(p->p>2 && !isprime(primepi(p)), factor(n)[, 1])} \\ Andrew Howroyd, Aug 26 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, Apr 09 2018
STATUS
approved