OFFSET
0,2
COMMENTS
Binomial transform of [1, 7, 1, 0, 0, 0, ...].
Numbers m > 0 such that 8*m + 161 is a square.
REFERENCES
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, Addison-Wesley, 1994.
LINKS
FORMULA
a(n) = binomial(n + 1, 2) + 6*n + 1 = binomial(n, 2) + 7*n + 1.
a(n) = a(n-1) + n + 6.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3, where a(0) = 1, a(1) = 8 and a(2) = 16.
a(n) = 2*a(n-1) - a(n-2) + 1.
a(n) = A004120(n+1) for n > 1.
a(n) = A056119(n) + 1.
G.f.: (5*x^2 - 5*x - 1)/(x - 1)^3.
E.g.f.: (1/2)*(x^2 + 14*x + 2)*exp(x).
Sum_{n>=0} 1/a(n) = 24097/45220 + 2*Pi*tan(sqrt(161)*Pi/2) / sqrt(161) = 1.4630922534498496... - Vaclav Kotesovec, Apr 11 2018
EXAMPLE
Illustration of initial terms (by the formula a(n) = A052905(n) + 3*n):
. o
. o o
. o o o o
. o o o o o o
. o o o o o o o o o
. o o o o o o o o o o o o
. o o o o o o o o o o . . . . . o
. o o o o o o o . . . . o o . . . . . o
. o o o o o . . . o o . . . . o o . . . . . o
. o o o . . o o . . . o o . . . . o o . . . . . o
. o o . o o . . o o . . . o o . . . . o o . . . . . o
. o o o . o o . . o o . . . o o . . . . o o . . . . . o
. o o o o o o o o o o o o o o o o o o o o o o o o o o o o
. o o o o o o o o o o o o o o o o o o o o o
. o o o o o o o o o o o o o o o o o o o o o
. o o o o o o o o o o o o o o o o o o o o o
----------------------------------------------------------------------
. 1 8 16 25 35 46 58
MAPLE
a := n -> (n^2 + 13*n + 2)/2;
seq(a(n), n = 0 .. 100);
MATHEMATICA
Table[(n^2 + 13 n + 2)/2, {n, 0, 100}]
CoefficientList[ Series[(5x^2 - 5x - 1)/(x - 1)^3, {x, 0, 50}], x] (* or *)
LinearRecurrence[{3, -3, 1}, {1, 8, 16}, 51] (* Robert G. Wilson v, May 19 2018 *)
PROG
(Maxima) makelist((n^2 + 13*n + 2)/2, n, 0, 100);
(PARI) a(n) = (n^2 + 13*n + 2)/2; \\ Altug Alkan, Apr 12 2018
CROSSREFS
Sequences whose n-th terms are of the form binomial(n, 2) + n*k + 1:
KEYWORD
nonn,easy
AUTHOR
Franck Maminirina Ramaharo, Apr 09 2018
STATUS
approved