login
A302505
Numbers whose prime indices are squarefree and have disjoint prime indices.
25
1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 13, 15, 16, 17, 20, 22, 24, 26, 29, 30, 31, 32, 33, 34, 40, 41, 43, 44, 47, 48, 51, 52, 55, 58, 59, 60, 62, 64, 66, 67, 68, 73, 79, 80, 82, 83, 85, 86, 88, 93, 94, 96, 101, 102, 104, 109, 110, 113, 116, 118, 120, 123, 124, 127
OFFSET
1,2
COMMENTS
A prime index of n is a number m such that prime(m) divides n.
EXAMPLE
Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of set multisystems.
01: {}
02: {{}}
03: {{1}}
04: {{},{}}
05: {{2}}
06: {{},{1}}
08: {{},{},{}}
10: {{},{2}}
11: {{3}}
12: {{},{},{1}}
13: {{1,2}}
15: {{1},{2}}
16: {{},{},{},{}}
17: {{4}}
20: {{},{},{2}}
22: {{},{3}}
24: {{},{},{},{1}}
26: {{},{1,2}}
29: {{1,3}}
30: {{},{1},{2}}
31: {{5}}
32: {{},{},{},{},{}}
MATHEMATICA
primeMS[n_]:=If[n===1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[100], UnsameQ@@Join@@primeMS/@primeMS[#]&]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Apr 09 2018
STATUS
approved