login
A302498
Numbers that are a power of a prime number whose prime index is itself a power of a prime number.
3
1, 2, 3, 4, 5, 7, 8, 9, 11, 16, 17, 19, 23, 25, 27, 31, 32, 41, 49, 53, 59, 64, 67, 81, 83, 97, 103, 109, 121, 125, 127, 128, 131, 157, 179, 191, 211, 227, 241, 243, 256, 277, 283, 289, 311, 331, 343, 353, 361, 367, 401, 419, 431, 461, 509, 512, 529, 547, 563
OFFSET
1,2
COMMENTS
A prime index of n is a number m such that prime(m) divides n.
LINKS
EXAMPLE
49 is in the sequence because 49 = prime(prime(1)^2)^2.
Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of constant constant-multiset multisystems.
01: {}
02: {{}}
03: {{1}}
04: {{},{}}
05: {{2}}
07: {{1,1}}
08: {{},{},{}}
09: {{1},{1}}
11: {{3}}
16: {{},{},{},{}}
17: {{4}}
19: {{1,1,1}}
23: {{2,2}}
25: {{2},{2}}
27: {{1},{1},{1}}
31: {{5}}
32: {{},{},{},{},{}}
41: {{6}}
49: {{1,1},{1,1}}
53: {{1,1,1,1}}
59: {{7}}
64: {{},{},{},{},{},{}}
MATHEMATICA
Select[Range[100], Or[#===1, PrimePowerQ[#]&&And@@(Or[#===1, PrimePowerQ[#]]&/@PrimePi/@FactorInteger[#][[All, 1]])]&]
PROG
(PARI) ok(n)={my(p); n == 1 || (isprimepower(n, &p) && (p == 2 || isprimepower(primepi(p))))} \\ Andrew Howroyd, Aug 26 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, Apr 09 2018
STATUS
approved