login
A302412
Number of nX5 0..1 arrays with every element equal to 0, 1, 2 or 5 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.
1
16, 78, 142, 698, 3553, 16123, 69537, 318944, 1443006, 6499439, 29342963, 132515475, 598206206, 2700821319, 12193938017, 55053310125, 248556193524, 1122197210259, 5066543054808, 22874620100302, 103275416672447
OFFSET
1,1
COMMENTS
Column 5 of A302415.
LINKS
FORMULA
Empirical: a(n) = 2*a(n-1) +7*a(n-2) +33*a(n-3) -17*a(n-4) -148*a(n-5) -283*a(n-6) +102*a(n-7) +759*a(n-8) +1031*a(n-9) +447*a(n-10) -3315*a(n-11) -4159*a(n-12) -2504*a(n-13) +14801*a(n-14) +8117*a(n-15) +3789*a(n-16) +25983*a(n-17) -37277*a(n-18) -56344*a(n-19) -54281*a(n-20) -69254*a(n-21) +48078*a(n-22) +109209*a(n-23) +104475*a(n-24) +126648*a(n-25) +33489*a(n-26) +189304*a(n-27) +20110*a(n-28) -653272*a(n-29) +161269*a(n-30) -106425*a(n-31) -799092*a(n-32) +1245648*a(n-33) -184828*a(n-34) -395226*a(n-35) +1433597*a(n-36) -1493476*a(n-37) -74222*a(n-38) +514572*a(n-39) -271735*a(n-40) +810224*a(n-41) -1517978*a(n-42) +1157101*a(n-43) +51027*a(n-44) -1875418*a(n-45) +1838887*a(n-46) -228033*a(n-47) -454134*a(n-48) +881411*a(n-49) -487380*a(n-50) -55703*a(n-51) +100494*a(n-52) -20722*a(n-53) +83908*a(n-54) -137985*a(n-55) -14390*a(n-56) +35889*a(n-57) -7488*a(n-58) +818*a(n-59) -8617*a(n-60) +9341*a(n-61) +8927*a(n-62) -3624*a(n-63) -2850*a(n-64) +540*a(n-65) +144*a(n-66) for n>73
EXAMPLE
Some solutions for n=5
..0..1..1..0..1. .0..1..0..0..1. .0..1..0..1..0. .0..1..0..1..0
..0..0..1..1..1. .0..1..0..1..1. .0..0..1..1..0. .0..1..0..0..1
..1..0..1..0..0. .0..1..0..0..0. .0..1..0..1..0. .0..1..0..1..0
..1..0..1..0..1. .1..0..0..1..0. .0..1..0..0..0. .1..1..0..1..1
..0..0..1..0..1. .0..1..0..1..0. .1..1..0..1..1. .0..0..1..0..0
CROSSREFS
Cf. A302415.
Sequence in context: A281466 A302620 A195976 * A303179 A061995 A212563
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 07 2018
STATUS
approved