This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A302351 Hyper-Wiener index of body-centered cubic grid cells in a row. 1
 92, 377, 1128, 2700, 5548, 10277, 17392, 27798, 42300, 61853, 87512, 120432, 161868, 213175, 275808, 351322, 441372, 547713, 672200, 816788, 983532, 1174587, 1392208, 1638750, 1916668, 2228517, 2576952, 2964728, 3394700, 3869823, 4393152, 4967842 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Colin Barker, Table of n, a(n) for n = 1..1000 Hamzeh Mujahed, Benedek Nagy, Hyper-Wiener Index on Rows of Unit Cells of the BCC Grid, Comptes rendus de l’Académie bulgare des Sciences, Tome 71, No 5, 2018, 675-684. Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1). FORMULA a(n) = (25*n^4 + 105*n^3 + 143*n^2 + 171*n + 108)/6 (proven). From Colin Barker, Jun 11 2018: (Start) G.f.: x*(92 - 83*x + 163*x^2 - 90*x^3 + 18*x^4 + 50*x^5 - 250*x^6 + 500*x^7 - 500*x^8 + 250*x^9 - 50*x^10) / (1 - x)^5. a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>11. (End) PROG (PARI) Vec(x*(92 - 83*x + 163*x^2 - 90*x^3 + 18*x^4 + 50*x^5 - 250*x^6 + 500*x^7 - 500*x^8 + 250*x^9 - 50*x^10) / (1 - x)^5 + O(x^40)) \\ Colin Barker, Jun 11 2018 CROSSREFS Sequence in context: A063326 A185461 A246802 * A100169 A100170 A233311 Adjacent sequences:  A302348 A302349 A302350 * A302352 A302353 A302354 KEYWORD nonn AUTHOR Benedek Nagy, Jun 09 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 13 20:27 EST 2019. Contains 329973 sequences. (Running on oeis4.)