This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A302350 Instance of a permutation of the positive integers such that lcm(a(n), a(n+1)) <= c*n*log(n)^2. 8
 1, 6, 3, 15, 30, 10, 5, 20, 2, 140, 35, 70, 210, 105, 21, 42, 14, 7, 77, 154, 770, 385, 55, 110, 330, 165, 33, 66, 22, 11, 143, 429, 858, 286, 2002, 91, 273, 546, 182, 910, 455, 65, 130, 390, 195, 39, 78, 26, 13, 221, 663, 1326, 442, 4862, 187, 561, 1122, 374, 2618, 119, 357, 714, 238, 1190, 595, 85, 170, 510, 255, 51, 102, 34, 17 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS For details of the construction see [Mazet & Saias]. This sequence is also a "chain": a(n) is either a divisor or a multiple of a(n+1). Another instance of a "permutation-chain" is: A064736. LINKS Michel Marcus, Table of n, a(n) for n = 1..5168 (for 26 iterations) Y.-G. Chen and C.-S. Ji, The permutation of integers with small least common multiple of two subsequent terms, Acta Math. Hungarica 132(2011), 307-309. P. Erdős, R. Freud, and N. Hegyvári, Arithmetical properties of permutations of integers, Acta Mathematica Hungarica 41:1-2 (1983), pp 169-176. Michel Marcus, PARI scripts Pierre Mazet, Eric Saias, Etude du graphe divisoriel 4, arXiv:1803.10073 [math.NT], 2018. G. Tenenbaum, Sur un problème de crible et ses applications, Annales scientifiques de l'École Normale Supérieure, 4ème série, tome 19, n°1, (1986), p.1-30. G. Tenenbaum, Sur un problème de crible et ses applications. II. Corrigendum et étude du graphe divisoriel, Annales scientifiques de l'École Normale Supérieure, Série 4 : Tome 28 (1995) no. 2 , p. 115-127. PROG (PARI) See links. CROSSREFS Cf. A064736. Sequence in context: A097917 A116570 A225503 * A046879 A248267 A236415 Adjacent sequences:  A302347 A302348 A302349 * A302351 A302352 A302353 KEYWORD nonn AUTHOR Michel Marcus, Apr 06 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 21 23:04 EDT 2019. Contains 326169 sequences. (Running on oeis4.)