login
A302331
a(0)=1, a(1)=141; for n>1, a(n) = 142*a(n-1) - a(n-2).
4
1, 141, 20021, 2842841, 403663401, 57317360101, 8138661470941, 1155632611513521, 164091692173449041, 23299864656018250301, 3308416689462418093701, 469771870039007351055241, 66704297128849581431750521, 9471540420426601555957518741, 1344892035403448571364535910701
OFFSET
0,2
FORMULA
G.f.: (1 - x)/(1 - 142*x + x^2).
a(n) = a(-1-n).
a(n) = cosh((2*n + 1)*arccosh(6))/6.
a(n) = ((6 + sqrt(35))^(2*n + 1) + 1/(6 + sqrt(35))^(2*n + 1))/12.
a(n) = (1/6)*T(2*n+1, 6), where T(n,x) denotes the n-th Chebyshev polynomial of the first kind. - Peter Bala, Jul 08 2022
MATHEMATICA
LinearRecurrence[{142, -1}, {1, 141}, 20]
CoefficientList[Series[(1-x)/(1-142x+x^2), {x, 0, 20}], x] (* Harvey P. Dale, Jun 21 2021 *)
PROG
(PARI) x='x+O('x^99); Vec((1-x)/(1-142*x+x^2)) \\ Altug Alkan, Apr 06 2018
CROSSREFS
Sixth row of the array A188646.
Similar sequences of the type cosh((2*n+1)*arccosh(k))/k are listed in A302329.
Sequence in context: A221104 A202045 A066623 * A172738 A172814 A172865
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Apr 05 2018
STATUS
approved