OFFSET
0,2
LINKS
Colin Barker, Table of n, a(n) for n = 0..450
Tanya Khovanova, Recursive Sequences
Index entries for linear recurrences with constant coefficients, signature (142,-1).
FORMULA
G.f.: (1 - x)/(1 - 142*x + x^2).
a(n) = a(-1-n).
a(n) = cosh((2*n + 1)*arccosh(6))/6.
a(n) = ((6 + sqrt(35))^(2*n + 1) + 1/(6 + sqrt(35))^(2*n + 1))/12.
a(n) = (1/6)*T(2*n+1, 6), where T(n,x) denotes the n-th Chebyshev polynomial of the first kind. - Peter Bala, Jul 08 2022
MATHEMATICA
LinearRecurrence[{142, -1}, {1, 141}, 20]
CoefficientList[Series[(1-x)/(1-142x+x^2), {x, 0, 20}], x] (* Harvey P. Dale, Jun 21 2021 *)
PROG
(PARI) x='x+O('x^99); Vec((1-x)/(1-142*x+x^2)) \\ Altug Alkan, Apr 06 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Apr 05 2018
STATUS
approved