login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A302301 Number of ways to write n as a sum of two distinct semiprimes. 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 2, 2, 1, 1, 1, 2, 2, 3, 2, 0, 1, 3, 3, 2, 1, 3, 3, 2, 2, 4, 3, 2, 1, 4, 5, 3, 2, 1, 2, 3, 2, 5, 3, 2, 2, 5, 6, 6, 1, 3, 5, 3, 3, 4, 4, 3, 2, 6, 7, 5, 3, 3, 3, 4, 3, 5, 5, 3, 2, 7, 7, 2, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,19

LINKS

Table of n, a(n) for n=1..86.

Index entries for sequences related to partitions

FORMULA

a(n) = Sum_{i=1..floor((n-1)/2)} [Omega(i) = 2] * [Omega(n-i) = 2], where Omega = A001222 and [] is the Iverson bracket.

EXAMPLE

a(19) = 2; 19 = 15+4 = 10+9.

MATHEMATICA

Table[Sum[KroneckerDelta[PrimeOmega[i], 2] KroneckerDelta[PrimeOmega[n - i], 2], {i, Floor[(n - 1)/2]}], {n, 100}]

PROG

(PARI) a(n) = sum(i=1, (n-1)\2, (bigomega(i)==2)*(bigomega(n-i)==2)); \\ Michel Marcus, Apr 08 2018

CROSSREFS

Cf. A001222, A001358, A072931.

Sequence in context: A068914 A090824 A264620 * A277264 A259538 A099314

Adjacent sequences:  A302298 A302299 A302300 * A302302 A302303 A302304

KEYWORD

nonn,easy

AUTHOR

Wesley Ivan Hurt, Apr 04 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 11 12:33 EST 2019. Contains 329916 sequences. (Running on oeis4.)