login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A302300 a(n) = Sum_{p in P} (Sum_{k_j = 1} 1)^2, where P is the set of partitions of n, and the k_j are the frequencies in p. 2

%I #32 Mar 24 2023 14:21:30

%S 0,1,1,5,6,12,21,33,50,79,116,169,246,346,487,675,927,1254,1702,2263,

%T 3014,3966,5210,6766,8795,11303,14531,18521,23583,29803,37654,47231,

%U 59206,73792,91867,113778,140788,173377,213289,261318,319764,389846,474745,576164

%N a(n) = Sum_{p in P} (Sum_{k_j = 1} 1)^2, where P is the set of partitions of n, and the k_j are the frequencies in p.

%C This sequence is part of the contribution to the b^2 term of C_{1-b,2}(q) for(1-b,2)-colored partitions - partitions in which we can label parts any of an indeterminate 1-b colors, but are restricted to using only 2 of the colors per part size. This formula is known to match the Han/Nekrasov-Okounkov hooklength formula truncated at hooks of size two up to the linear term in b.

%C It is of interest to enumerate and determine specific characteristics of partitions of n, considering each partition individually.

%H Alois P. Heinz, <a href="/A302300/b302300.txt">Table of n, a(n) for n = 0..4000</a>

%H Guo-Niu Han, <a href="https://arxiv.org/abs/0805.1398">The Nekrasov-Okounkov hook length formula: refinement, elementary proof, extension and applications</a>, arXiv:0805.1398 [math.CO], 2008.

%H Guo-Niu Han, <a href="https://doi.org/10.5802/aif.2515">The Nekrasov-Okounkov hook length formula: refinement, elementary proof, extension and applications</a>, Annales de l'institut Fourier, Tome 60 (2010) no. 1, pp. 1-29.

%H W. J. Keith, <a href="https://doi.org/10.1007/s11139-015-9704-x">Restricted k-color partitions</a>, Ramanujan Journal (2016) 40: 71.

%F a(n) = Sum_{p in P} (Sum_{k_j = 1} 1)^2, where P is the set of partitions of n, and k_j are the frequencies in p.

%e For a(6), we sum over partitions of six. For each partition, we count 1 for each part which appears once, then square the total in each partition.

%e 6............1^2 = 1

%e 5,1..........2^2 = 4

%e 4,2..........2^2 = 4

%e 4,1,1........1^2 = 1

%e 3,3..........0^2 = 0

%e 3,2,1........3^2 = 9

%e 3,1,1,1......1^2 = 1

%e 2,2,2........0^2 = 0

%e 2,2,1,1......0^2 = 0

%e 2,1,1,1,1....1^2 = 1

%e 1,1,1,1,1,1..0^2 = 0

%e --------------------

%e Total.............21

%p b:= proc(n, i, p) option remember; `if`(n=0 or i=1, (

%p `if`(n=1, 1, 0)+p)^2, add(b(n-i*j, i-1,

%p `if`(j=1, 1, 0)+p), j=0..n/i))

%p end:

%p a:= n-> b(n$2, 0):

%p seq(a(n), n=0..60); # _Alois P. Heinz_, Apr 05 2018

%t Array[Total@ Map[Count[Split@ #, _?(Length@ # == 1 &)]^2 &, IntegerPartitions[#]] &, 43] (* _Michael De Vlieger_, Apr 05 2018 *)

%t b[n_, i_, p_] := b[n, i, p] = If[n == 0 || i == 1, (

%t If[n == 1, 1, 0] + p)^2, Sum[b[n - i*j, i - 1,

%t If[j == 1, 1, 0] + p], {j, 0, n/i}]];

%t a[n_] := b[n, n, 0];

%t a /@ Range[0, 60] (* _Jean-François Alcover_, Jun 06 2021, after _Alois P. Heinz_ *)

%o (Python)

%o def frequencies(partition, n):

%o tot = 0

%o freq_list = []

%o i = 0

%o for p in partition:

%o freq = [0 for i in range(n+1)]

%o for i in p:

%o freq[i] += 1

%o for f in freq:

%o if f == 0:

%o tot += 1

%o freq_list.append(freq)

%o return freq_list

%o def sum_square_freqs_of_one(freq_part):

%o tot = 0

%o for f in freq_part:

%o count = 0

%o for i in f:

%o if i == 1:

%o count += 1

%o tot += count*count

%o return tot

%o import sympy.combinatorics

%o def A302300(n): # rewritten by _R. J. _Mathar_, 2023-03-24

%o a =0

%o if n ==0 :

%o return 0

%o part = sympy.combinatorics.IntegerPartition([n])

%o partlist = []

%o while True:

%o part = part.next_lex()

%o partlist.append(part.partition)

%o if len(part.partition) <=1 :

%o break

%o freq_part = frequencies(partlist, n)

%o return sum_square_freqs_of_one(freq_part)

%o for n in range(20): print(A302300(n))

%Y Cf. A024786, A197126.

%K nonn

%O 0,4

%A _Emily Anible_, Apr 04 2018

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 19 08:45 EDT 2024. Contains 371782 sequences. (Running on oeis4.)