This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A302254 Exponent of the group of the Gaussian integers in a reduced system modulo (1+i)^n. 2
 1, 1, 2, 4, 4, 4, 4, 4, 8, 8, 16, 16, 32, 32, 64, 64, 128, 128, 256, 256, 512, 512, 1024, 1024, 2048, 2048, 4096, 4096, 8192, 8192, 16384, 16384, 32768, 32768, 65536, 65536, 131072, 131072, 262144, 262144, 524288, 524288, 1048576, 1048576, 2097152, 2097152, 4194304, 4194304, 8388608, 8388608 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS For n > 0, the number of elements in the group of the Gaussian integers in a reduced system modulo (1+i)^n is 2^(n-1). LINKS FORMULA For n > 5, a(n) = 2^(floor(n/2) - 1). For even n, a(n) = A227334(2^(n/2)). EXAMPLE For Gaussian integer x such that (x, 1+i) = 1, x^4 - 1 = (x + 1)(x - 1)(x + i)(x - i) provides at least 7 factors of 1+i in total (and exactly 7 when x = 2+i), so a(7) = 4. MATHEMATICA Join[{1, 1, 2, 4, 4, 4}, Table[2^(Floor[n/2] - 1), {n, 6, 50}]] (* Vincenzo Librandi, Apr 04 2018 *) PROG (MAGMA) [1, 1, 2, 4, 4, 4] cat [2^(Floor(n div 2)-1): n in [6..50]]; // Vincenzo Librandi, Apr 04 2018 CROSSREFS Cf. A016116, A079458, A227334. Sequence in context: A260085 A159461 A046930 * A160409 A035645 A063440 Adjacent sequences:  A302251 A302252 A302253 * A302255 A302256 A302257 KEYWORD nonn,easy AUTHOR Jianing Song, Apr 04 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 18 12:10 EDT 2019. Contains 321283 sequences. (Running on oeis4.)