OFFSET
1,2
COMMENTS
The divisors are counted mod associates.
Conjecture: a(14) = 63 is the largest odd term.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..394 (calculated from the b-file at A279254)
EXAMPLE
A279254(14) = 200 and 200 has 63 divisors in Gaussian integers (up to association), so a(14) = 63.
MATHEMATICA
With[{s = Array[DivisorSigma[0, #, GaussianIntegers -> True] &, 10^6]}, Union@ FoldList[Max, s]] (* Michael De Vlieger, Apr 05 2018 *)
PROG
(PARI)
b(n)= \\ A062327
{
my(r=1, f=factor(n));
for(j=1, #f[, 1], my(p=f[j, 1], e=f[j, 2]);
if(p==2, r*=(2*e+1));
if(p%4==1, r*=(e+1)^2);
if(p%4==3, r*=(e+1));
);
return(r);
}
{ my(r=0, t); for(n=1, 10^6, t=b(n); if(t>r, r=t; print1(t, ", "))); }
\\ Joerg Arndt, Apr 04 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Jianing Song, Apr 04 2018
STATUS
approved