login
Number of nX4 0..1 arrays with every element equal to 1, 2 or 3 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.
1

%I #4 Apr 03 2018 12:13:21

%S 2,45,164,934,4237,21777,105585,523414,2578424,12726069,62802085,

%T 309849336,1529212139,7545987106,37239443170,183771070484,

%U 906898467298,4475474508545,22086156194245,108993766999235,537877222587527

%N Number of nX4 0..1 arrays with every element equal to 1, 2 or 3 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

%C Column 4 of A302224.

%H R. H. Hardin, <a href="/A302220/b302220.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 5*a(n-1) +11*a(n-2) -42*a(n-3) -95*a(n-4) +21*a(n-5) +327*a(n-6) +1255*a(n-7) +317*a(n-8) -5188*a(n-9) -6921*a(n-10) +6005*a(n-11) +22780*a(n-12) +10157*a(n-13) -27962*a(n-14) -42374*a(n-15) -2355*a(n-16) +48767*a(n-17) +45664*a(n-18) -6331*a(n-19) -46138*a(n-20) -32422*a(n-21) +6577*a(n-22) +23809*a(n-23) +15150*a(n-24) -2372*a(n-25) -6308*a(n-26) -2794*a(n-27) -68*a(n-28) +832*a(n-29) +20*a(n-30) for n>34

%e Some solutions for n=5

%e ..0..1..0..0. .0..0..0..1. .0..1..1..0. .0..1..1..0. .0..0..0..1

%e ..1..0..1..0. .0..1..1..0. .0..0..0..0. .0..0..0..0. .1..0..1..0

%e ..0..1..1..0. .1..1..0..0. .1..1..1..1. .1..1..1..1. .1..1..0..0

%e ..0..1..0..0. .1..1..0..1. .0..0..0..0. .0..1..0..0. .0..1..0..1

%e ..0..0..1..1. .0..0..1..1. .1..1..0..0. .0..0..1..1. .1..0..1..1

%Y Cf. A302224.

%K nonn

%O 1,1

%A _R. H. Hardin_, Apr 03 2018