|
|
A302110
|
|
Let d be the list of A000005(n) = tau(n) divisors of n. Then a(n) is the largest k such that Sum_{i=1..#d-k} d_i > n.
|
|
2
|
|
|
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,24
|
|
COMMENTS
|
Records (0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, ...) occur at 1, 6, 24, 120, 240, 720, 1260, 2520, 5040, 15120, 27720, 55440, ... - Antti Karttunen, Apr 02 2018
|
|
LINKS
|
Antti Karttunen, Table of n, a(n) for n = 1..65537
|
|
FORMULA
|
a(n) = A000005(n) - A125747(n).
a(n) > 0 if and only if n is in A023196.
|
|
PROG
|
(PARI)
A125747(n) = { my(k=0, s=0); fordiv(n, d, k++; s += d; if(s>=n, return(k))); };
A302110(n) = (numdiv(n) - A125747(n)); \\ Antti Karttunen, Apr 02 2018
|
|
CROSSREFS
|
Cf. A000005, A023196, A125746, A125747, A300826.
Sequence in context: A294890 A325562 A176917 * A085983 A285701 A088183
Adjacent sequences: A302107 A302108 A302109 * A302111 A302112 A302113
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
David A. Corneth, Apr 01 2018
|
|
STATUS
|
approved
|
|
|
|