login
A302098
Number of prime factors (with multiplicity) of generalized Fermat number 14^(2^n) + 1.
1
2, 1, 2, 3, 2, 4, 2, 3
OFFSET
0,1
COMMENTS
a(8) >= 5. - Chai Wah Wu, Dec 09 2019
FORMULA
a(n) = A001222(A152587(n)).
EXAMPLE
b(n) = 14^(2^n) + 1
Complete factorizations:
b(0) = 3*5
b(1) = 197
b(2) = 41*937
b(3) = 17*5393*16097
b(4) = 193*11284732320255809
b(5) = 7489*1204905857*1667461121*315256811699009
b(6) = 8633886977*P64
b(7) = 257*100497382788383295179961898289105815085380571534081*P95
PROG
(PARI) a(n) = bigomega(14^(2^n)+1)
KEYWORD
nonn,hard,more
AUTHOR
Jeppe Stig Nielsen, Apr 01 2018
STATUS
approved