The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A302041 An omega analog for a nonstandard factorization based on the sieve of Eratosthenes (A083221). 13
 0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 1, 2, 3, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 2, 3, 1, 2, 2, 2, 1, 2, 2, 2, 3, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,6 LINKS Antti Karttunen, Table of n, a(n) for n = 1..65537 FORMULA a(1) = 0; for n > 1, a(n) = 1 + a(A302044(n)). a(n) = A001221(A250246(n)). a(n) = A069010(A252754(n)). PROG (PARI) \\ Assuming A250469 and its inverse A268674 have been precomputed, then the following is reasonably fast: A302044(n) = if(1==n, n, my(k=0); while((n%2), n = A268674(n); k++); n = (n/2^valuation(n, 2)); while(k>0, n = A250469(n); k--); (n)); A302041(n) = if(1==n, 0, 1+A302041(A302044(n))); (PARI) up_to = 65537; ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om, invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om, invec[i], (1+pt))); outvec; }; A020639(n) = if(n>1, if(n>n=factor(n, 0)[1, 1], n, factor(n)[1, 1]), 1); \\ From A020639 v078898 = ordinal_transform(vector(up_to, n, A020639(n))); A078898(n) = v078898[n]; A000265(n) = (n/2^valuation(n, 2)); A302044(n) = { my(c = A000265(A078898(n))); if(1==c, 1, my(p = prime(-1+primepi(A020639(n))+primepi(A020639(c))), d = A078898(c), k=0); while(d, k++; if((1==k)||(A020639(k)>=p), d -= 1)); (k*p)); }; A302041(n) = if(1==n, 0, 1+A302041(A302044(n))); (PARI) \\ Or, using also some of the code from above: A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961 A055396(n) = if(1==n, 0, primepi(A020639(n))); A250246(n) = if(1==n, n, my(k = 2*A250246(A078898(n)), r = A055396(n)); if(1==r, k, while(r>1, k = A003961(k); r--); (k))); A302041(n) = omega(A250246(n)); CROSSREFS Cf. A001221, A069010, A250246, A252754, A302044. Cf. A302040 (positions of terms < 2). Cf. A253557 (a similar analog for bigomega), A302050, A302051, A302052, A302039, A302055 (other analogs). Differs from A302031 for the first time at n=59, where a(59) = 1, while A302031(59) = 2. Sequence in context: A125029 A062893 A328512 * A302031 A237353 A293460 Adjacent sequences:  A302038 A302039 A302040 * A302042 A302043 A302044 KEYWORD nonn AUTHOR Antti Karttunen, Mar 31 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 26 11:15 EDT 2020. Contains 337358 sequences. (Running on oeis4.)