

A302034


A028234 analog for a factorization process based on the Ludic sieve (A255127); Discard all instances of the (smallest) Ludic factor A272565(n) from n.


7



1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 1, 3, 1, 7, 5, 1, 1, 9, 1, 5, 1, 11, 1, 3, 1, 13, 7, 7, 1, 15, 1, 1, 5, 17, 7, 9, 1, 19, 11, 5, 1, 21, 1, 11, 1, 23, 1, 3, 1, 25, 19, 13, 1, 27, 1, 7, 7, 29, 11, 15, 1, 31, 13, 1, 11, 33, 1, 17, 5, 35, 1, 9, 1, 37, 17, 19, 1, 39, 7, 5, 11, 41, 1, 21, 1, 43, 35, 11, 1, 45, 1, 23, 1, 47, 13, 3, 1, 49, 23, 25, 1, 51, 13, 13, 19
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,6


COMMENTS

Iterating n, a(n), a(a(n)), a(a(a(n))), ..., until 1 is reached, and taking the Ludic factor (A272565) of each term gives a sequence of distinct Ludic numbers (A003309) in ascending order, while applying A302035 to the same terms gives the corresponding "exponents" of these Ludic factors in this nonstandard "Ludic factorization of n", unique for each natural number n >= 1. Permutation pair A302025/A302026 maps between this Ludic factorization and the ordinary prime factorization of n. See also comments and examples in A302032.


LINKS

Antti Karttunen, Table of n, a(n) for n = 1..32768
Index entries for sequences generated by sieves


FORMULA

For n > 1, a(n) = A269379^(r)(A000265(A260739(n))), where r = A260738(n)1 and A269379^(r)(n) stands for applying r times the map x > A269379(x), starting from x = n.
a(n) = A302025(A028234(A302026(n))).


PROG

(PARI)
\\ Assuming A269379 and its inverse A269380 have been precomputed, then the following is reasonably fast:
A302034(n) = if(1==n, n, my(k=0); while((n%2), n = A269380(n); k++); n = (n/2^valuation(n, 2)); while(k>0, n = A269379(n); k); (n));


CROSSREFS

Cf. A003309, A255127, A260738, A260739, A269379, A269380, A302025, A302026, A302032, A302035.
Cf. A302036 (gives the positions of 1's).
Cf. also A028234, A302044.
Sequence in context: A086767 A119288 A226040 * A302044 A028234 A322995
Adjacent sequences: A302031 A302032 A302033 * A302035 A302036 A302037


KEYWORD

nonn


AUTHOR

Antti Karttunen, Apr 01 2018


STATUS

approved



