%I
%S 1,1,2,1,3,1,2,4,1,2,3,5,1,2,3,6,1,3,7,1,2,4,8,1,2,3,4,5,9,1,2,3,4,5,
%T 6,10,1,2,3,5,7,11,1,2,3,4,6,12,1,2,3,5,6,7,13,1,2,3,6,7,14,1,3,7,15,
%U 1,2,4,8,16,1,2,3,4,5,8,9,17,1,2,3,4,5,6
%N Irregular triangle read by rows T(n, k), n >= 1 and 1 <= k <= A301977(n): T(n, k) is the kth positive number whose binary digits appear in order but not necessarily as consecutive digits in the binary representation of n.
%C This sequence has similarities with A119709 and A165416; there we consider consecutive digits, here not.
%H Rémy Sigrist, <a href="/A301983/b301983.txt">Rows n = 1..500 of triangle, flattened</a>
%H <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>
%F T(n, 1) = 1.
%F T(n, A301977(n)) = n.
%F T(2^n, k) = 2^(k1) for any n > 0 and k = 1..n+1.
%F T(2^n  1, k) = 2^k  1 for any n > 0 and k = 1..n.
%e Triangle begins:
%e 1: [1]
%e 2: [1, 2]
%e 3: [1, 3]
%e 4: [1, 2, 4]
%e 5: [1, 2, 3, 5]
%e 6: [1, 2, 3, 6]
%e 7: [1, 3, 7]
%e 8: [1, 2, 4, 8]
%e 9: [1, 2, 3, 4, 5, 9]
%e 10: [1, 2, 3, 4, 5, 6, 10]
%e 11: [1, 2, 3, 5, 7, 11]
%e 12: [1, 2, 3, 4, 6, 12]
%e 13: [1, 2, 3, 5, 6, 7, 13]
%e 14: [1, 2, 3, 6, 7, 14]
%e 15: [1, 3, 7, 15]
%e 16: [1, 2, 4, 8, 16]
%o (PARI) T(n,k) = my (b=binary(n), s=Set(1)); for (i=2, #b, s = setunion(s, Set(apply(v > 2*v+b[i], s)))); return (s[k])
%Y Cf. A119709, A165416, A301977 (row length).
%K nonn,base,tabf
%O 1,3
%A _Rémy Sigrist_, Mar 30 2018
