login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A301972 a(n) = n*(n^2 - 2*n + 4)*binomial(2*n,n)/((n + 1)*(n + 2)). 0
0, 1, 4, 21, 112, 570, 2772, 13013, 59488, 266526, 1175720, 5123426, 22108704, 94645460, 402503220, 1702300725, 7165821120, 30043474230, 125523450360, 522857438070, 2172127120800, 9002522512620, 37233403401480, 153704429299746, 633442159732032, 2606543487445100, 10710790748646352, 43957192722175908 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

For n > 2, a(n) is the n-th term of the main diagonal of iterated partial sums array of n-gonal numbers (in other words, a(n) is the n-th (n+2)-dimensional n-gonal number, see also example).

LINKS

Table of n, a(n) for n=0..27.

Index to sequences related to polygonal numbers

FORMULA

O.g.f.: (-4 + 31*x - 66*x^2 + 28*x^3 + (4 - 7*x)*(1 - 4*x)^(3/2))/(2*x^2*(1 - 4*x)^(3/2)).

E.g.f.: exp(2*x)*(4 - x + 2*x^2)*BesselI(1,2*x)/x - 2*exp(2*x)*(2 - x)*BesselI(0,2*x).

a(n) = [x^n] x*(1 - 3*x + n*x)/(1 - x)^(n+3).

a(n) ~ 4^n*sqrt(n)/sqrt(Pi).

EXAMPLE

For n = 5 we have:

----------------------------

0   1    2    3     4    [5]

----------------------------

0,  1,   5,  12,   22,   35,  ... A000326 (pentagonal numbers)

0,  1,   6,  18,   40,   75,  ... A002411 (pentagonal pyramidal numbers)

0,  1,   7,  25,   65,  140,  ... A001296 (4-dimensional pyramidal numbers)

0,  1,   8,  33,   98,  238,  ... A051836 (partial sums of A001296)

0,  1,   9,  42,  140,  378,  ... A051923 (partial sums of A051836)

0,  1,  10,  52,  192, [570], ... A050494 (partial sums of A051923)

----------------------------

therefore a(5) = 570.

MATHEMATICA

Table[n (n^2 - 2 n + 4) Binomial[2 n, n]/((n + 1) (n + 2)), {n, 0, 27}]

nmax = 27; CoefficientList[Series[(-4 + 31 x - 66 x^2 + 28 x^3 + (4 - 7 x) (1 - 4 x)^(3/2))/(2 x^2 (1 - 4 x)^(3/2)), {x, 0, nmax}], x]

nmax = 27; CoefficientList[Series[Exp[2 x] (4 - x + 2 x^2) BesselI[1, 2 x]/x - 2 Exp[2 x] (2 - x) BesselI[0, 2 x], {x, 0, nmax}], x] Range[0, nmax]!

Table[SeriesCoefficient[x (1 - 3 x + n x)/(1 - x)^(n + 3), {x, 0, n}], {n, 0, 27}]

CROSSREFS

Cf. A000984, A002457, A006484, A057145, A060354, A080851, A080852, A100119, A180266, A275490, A292551.

Sequence in context: A117381 A010908 A136786 * A026335 A027909 A127111

Adjacent sequences:  A301969 A301970 A301971 * A301973 A301974 A301975

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, Mar 29 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 22 10:07 EDT 2019. Contains 321421 sequences. (Running on oeis4.)