

A301916


Primes which divide numbers of the form 3^k + 1.


6



2, 5, 7, 17, 19, 29, 31, 37, 41, 43, 53, 61, 67, 73, 79, 89, 97, 101, 103, 113, 127, 137, 139, 149, 151, 157, 163, 173, 193, 197, 199, 211, 223, 233, 241, 257, 269, 271, 281, 283, 293, 307, 317, 331, 337, 349, 353, 367, 373, 379, 389, 397, 401, 409, 439
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

This sequence can be used to factor P1 values for prime candidates of the form 3^k+2, to aid with primality testing.
a(1) = 2 divides every number of the form 3^k+1. It is the only term with this property.
For k > 2, A000040(k) is a member if and only if A062117(k) is even.  Robert Israel, May 23 2018


LINKS

Robert Israel, Table of n, a(n) for n = 1..10000


EXAMPLE

Every value of 3^k+1 is an even number, so 2 is in the sequence.
No values of 3^k+1 is ever a multiple of 3 for any integer k, so 3 is not in the sequence.
3^2+1=10, which is a multiple of 5, so 5 is in the sequence.


MAPLE

f:= p > numtheory:order(3, p)::even:
f(2):= true:
select(isprime and f, [2, seq(p, p=5..1000, 2)]); # Robert Israel, May 23 2018


PROG

(PARI) isok(p)=if (p != 3, m = Mod(3, p); nb = znorder(m); for (k=1, nb, if (m^k == Mod(1, p), return(1)); ); ); return(0); \\ Michel Marcus, May 18 2018
(PARI) list(lim)=my(v=List([2]), t); forfactored(n=4, lim\1+1, if(n[2][, 2]==[1]~, my(p=n[1], m=Mod(3, p)); for(k=2, znorder(m, t), m*=3; if(m==1, listput(v, p); break))); t=n); Vec(v) \\ Charles R Greathouse IV, May 23 2018


CROSSREFS

Cf. A000040, A034472, A062117, A301917, A320481.
Sequence in context: A101150 A276322 A174281 * A038875 A019334 A045356
Adjacent sequences: A301913 A301914 A301915 * A301917 A301918 A301919


KEYWORD

nonn


AUTHOR

Luke W. Richards, Mar 28 2018


STATUS

approved



