%I #4 Mar 28 2018 10:57:06
%S 13,74,331,1754,8829,46079,240222,1258853,6603593,34694809,182347026,
%T 958881035,5042935900,26526353359,139537750005,734056924930,
%U 3861673664333,20315559703409,106877200731477,562268273632807
%N Number of nX6 0..1 arrays with every element equal to 0, 1 or 3 horizontally or antidiagonally adjacent elements, with upper left element zero.
%C Column 6 of A301884.
%H R. H. Hardin, <a href="/A301882/b301882.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = a(n-1) +48*a(n-2) -16*a(n-3) -864*a(n-4) +3*a(n-5) +7667*a(n-6) +1179*a(n-7) -37181*a(n-8) -8572*a(n-9) +110043*a(n-10) +31823*a(n-11) -237350*a(n-12) -64544*a(n-13) +345618*a(n-14) +74271*a(n-15) -425703*a(n-16) -53446*a(n-17) +346542*a(n-18) +24267*a(n-19) -275496*a(n-20) -3139*a(n-21) +132994*a(n-22) -2714*a(n-23) -63515*a(n-24) +1651*a(n-25) +15195*a(n-26) -192*a(n-27) -1586*a(n-28) +6*a(n-29) +68*a(n-30) -a(n-32) for n>33
%e Some solutions for n=5
%e ..0..0..0..1..0..1. .0..1..0..1..1..1. .0..1..1..0..1..1. .0..1..0..1..0..1
%e ..0..1..0..0..0..1. .0..1..0..1..0..1. .0..0..0..0..0..1. .0..1..0..1..0..1
%e ..0..1..1..1..0..1. .0..1..0..0..0..0. .0..1..0..1..0..0. .0..1..0..1..0..1
%e ..0..1..0..0..0..0. .0..1..1..0..1..1. .0..1..0..1..1..1. .0..1..1..0..0..1
%e ..0..1..1..0..1..0. .0..0..1..0..0..1. .0..1..0..1..0..0. .0..1..0..1..1..1
%Y Cf. A301884.
%K nonn
%O 1,1
%A _R. H. Hardin_, Mar 28 2018