The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A301850 The Dakota sequence: a sequence with zero-free number-wall over ternary extension fields. 3
 0, 1, 0, -1, 0, 1, 1, 0, 0, 1, 0, -1, 1, -1, 1, 0, 0, 1, 0, -1, 0, 1, 1, 0, 1, -1, 0, -1, 1, -1, 1, 0, 0, 1, 0, -1, 0, 1, 1, 0, 0, 1, 0, -1, 1, -1, 1, 0, 1, -1, 0, -1, 0, 1, 1, 0, 1, -1, 0, -1, 1, -1, 1, 0, 0, 1, 0, -1, 0, 1, 1, 0, 0, 1, 0, -1, 1, -1, 1, 0, 0, 1, 0, -1, 0, 1, 1, 0, 1, -1, 0, -1, 1, -1, 1, 0, 1, -1, 0, -1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0 COMMENTS c(0), c(1), ... is the fixed point of inflation morphism 1 -> 1 3, 2 -> 2 3, 3 -> 1 4, 4 -> 2 4, starting from state 1; a(-1), a(0), ... is the image of c(n) under encoding morphism 1 -> 0,+1; 2 -> +1,-1; 3 -> 0,-1; 4 -> +1,0; where c(n) denotes A301848(n). The number-walls (signed Hankel determinants) over finite fields with characteristic 3 of sequence x + a(n) with x not in F_3 have been proved free of zeros. REFERENCES Jean-Paul Allouche and Jeffrey O. Shallit, Automatic sequences, Cambridge, 2003. LINKS W. F. Lunnon, The number-wall algorithm: an LFSR cookbook, Journal of Integer Sequences 4 (2001), no. 1, 01.1.1. Fred Lunnon, The Pagoda sequence: a ramble through linear complexity, number walls, D0L sequences, finite state automata, and aperiodic tilings, Electronic Proceedings in Theoretical Computer Science 1 (2009), 130-148. MATHEMATICA b[n_] := b[n] = If[n == 0, 0, BitGet[n, IntegerExponent[n, 2] + 1]]; c[n_] := b[2 n] - 2 b[2 n - 1] + 3; Array[c, 50, 0] /. {1 -> {0, 1}, 2 -> {1, -1}, 3 -> {0, -1}, 4 -> {1, 0}} // Flatten (* Jean-François Alcover, Dec 13 2018 *) PROG (Magma) function b (n)   if n eq 0 then return 0; // alternatively,  return 1;   else while IsEven(n) do n := n div 2; end while; end if;   return n div 2 mod 2; end function; function c (n)   return b(n+n) - 2*b(n+n-1) + 3; end function; PGF := PolynomialRing(RationalField());  // polynomial in  x function xplusa (n, x)   return [ [x, x+1], [x+1, x-1], [x, x-1], [x+1, x] ]     [c(n div 2)][n mod 2+1]; end function; function a (n)   return Coefficient(xplusa(n, x), 0); end function;   nlo := 0; nhi := 32;   [a(n) : n in [nlo..nhi] ]; CROSSREFS Cf. A038189, A301848, A301849. Sequence in context: A285515 A190204 A189028 * A189031 A189212 A147781 Adjacent sequences:  A301847 A301848 A301849 * A301851 A301852 A301853 KEYWORD sign AUTHOR Fred Lunnon, Mar 27 2018 EXTENSIONS More terms from Jean-François Alcover, Dec 13 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 17 23:13 EDT 2022. Contains 356204 sequences. (Running on oeis4.)