login
A301815
Decimal expansion of gamma / (2*Pi), where gamma is Euler's constant A001620.
2
0, 9, 1, 8, 6, 6, 7, 2, 6, 2, 9, 9, 1, 5, 3, 9, 9, 0, 3, 7, 9, 6, 4, 2, 2, 3, 4, 0, 7, 1, 8, 7, 8, 0, 9, 1, 4, 1, 3, 6, 2, 9, 2, 8, 0, 5, 6, 0, 6, 4, 1, 2, 1, 2, 3, 6, 1, 0, 8, 7, 2, 0, 8, 3, 7, 4, 5, 6, 2, 8, 1, 9, 3, 4, 9, 6, 1, 8, 0, 7, 0, 6, 2, 9, 2, 3, 4, 6
OFFSET
0,2
FORMULA
Let beta(r) be the real part of Integral_{-oo..oo} (log(1/2 + i*z)^r / (exp(-Pi*z) + exp(Pi*z))^2) dz, where i denotes the imaginary unit. The constant equals -beta(1) and A301814 equals beta(1/2).
EXAMPLE
Equals 0.0918667262991539903796422340718780914136292805606412123610872...
MAPLE
evalf(gamma(0)/(2*Pi), 100);
MATHEMATICA
RealDigits[EulerGamma/(2*Pi), 10, 100][[1]] (* G. C. Greubel, Aug 11 2018 *)
PROG
(PARI) Euler/(2*Pi) \\ Altug Alkan, Apr 13 2018
(Magma) R:=RealField(100); EulerGamma(R)/(2*Pi(R)); // G. C. Greubel, Aug 27 2018
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Peter Luschny, Apr 13 2018
STATUS
approved