OFFSET
0,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..10000
Peter Luschny, An expansion for the Bernoulli function
FORMULA
Let beta(r) be the real part of Integral_{-oo..oo} (log(1/2 + i*z)^r / (exp(-Pi*z) + exp(Pi*z))^2) dz, where i denotes the imaginary unit. The constant equals -beta(1) and A301814 equals beta(1/2).
EXAMPLE
Equals 0.0918667262991539903796422340718780914136292805606412123610872...
MAPLE
evalf(gamma(0)/(2*Pi), 100);
MATHEMATICA
RealDigits[EulerGamma/(2*Pi), 10, 100][[1]] (* G. C. Greubel, Aug 11 2018 *)
PROG
(PARI) Euler/(2*Pi) \\ Altug Alkan, Apr 13 2018
(Magma) R:=RealField(100); EulerGamma(R)/(2*Pi(R)); // G. C. Greubel, Aug 27 2018
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Peter Luschny, Apr 13 2018
STATUS
approved