
CHORDLESS CYCLES IN THE n-ANDR�ASFAI GRAPH

RICHARD J. MATHAR

Abstract. The n-Andr�asfai graph is a simple, n-regular graph on N = 3n�1
nodes. We put their chordless cycles into equivalence classes, equivalent in the
sense of being the same apart from rotations and ips in the planar drawings,
and illustrate these chordless cycles for n � 8 by plotting one member of each
class.

1. Notation

The n-Andr�asfai graph Ant(n) with N = 3n� 1 vertices is constructed by �rst
drawing the 2-regular cyclic graph of the N -gon. A natural labelling of its vertices
is i = 0; 1; : : : N � 1 counter-clockwise starting at the East as if the vertices were
the roots of the cyclotomic polynomial �N on the unit circle in the complex plane.
Then edges are added between all vertex pairs (vi; vj) where where ji � jj � 1
(mod 3). The result is a n-regular graph (including the slightly degenerate simple
graph on 2 vertices) with n(3n�1)=2 edges. The subgraph of the N -gon is a natural
Hamiltonion cycle.
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Figure 1. The graphs An for n = 2 : : : 5. There is no vertex at
the crossing lines at the center. All vertices are on the outer rim
of the regular N -gon.
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A walk on the graph can be encoded in a Lederberg-Coxeter-Frucht (LCF) no-
tation [3]. Once an initial vertex is selected, the notation is a list of integer strides
between adjacent vertices of the walk in square brackets determined by the graph-
theoretical distance of the two vertices on the subgraph of the N -gon (Hamiltonian
cycle). The stride is this positive distance if the next node is reached faster circling
the N -gon counter-clock-wise, and the negative of that distance if it is reached
faster circling it clock-wise. So the Hamiltonian cycle is endowed with an orienta-
tion and the stride's sign indicates moving forward or backward on it. In formula:
A closed walk v0 ! v1 ! v2 ! : : : ! vl = v0 of length l, 0 � vi < N , is encoded
as [s1; s2; : : : sl] where

(1) si =

8>><
>>:

vi � vi�1; 0 < vi � vi�1 � N=2
vi � vi�1 �N; N=2 < vi � vi�1

vi � vi�1; �N=2 < vi � vi�1 < 0
vi � vi�1 +N; vi � vi�1 � �N=2

In the n-Andr�asfai graphs these strides are si 2 f�1;�4;�7;�10;�13 : : :g with
jsij � N=2. (For even N , an ambiguity about the sign of walking the edge through
the center of the planar graph is resolved by specifying +N=2 in this case.)

Remark 1. These strides could be mapped to lattice paths of up- and down steps
akin to Dyck-, Motzkin and similar paths.

The graphs have an obvious symmetry illustrated in Figure 1: rotating the graph
around the N�fold axis of the N -gon leaves it invariant, and ipping the graph
along a line that connects a vertex with the opposite vertex (N odd) or the center of
the opposite edge (N even) also leaves it invariant. Therefore the Dihedral Group
of 2N elements is a subgroup of the automorphism group [1, §3].

Remark 2. For n = 1, the connected simple graph on 2 vertices, the group is only
the cyclic group of 2 elements, given by swapping the two vertices.

2. Chordless Cycles

Cycles are de�ned as usual: closed trails where each vertex is visited at most
once and each edge used at most once. (The starting vertex is, philosophically
speaking, visited twice, but on the unlabelled graph the vertex is not marked, and
that is a moot point.)

For closed walks the arithmetic sum of these LCF strides is � 0 (mod N).

De�nition 1.

(2) w =

Pl

i=1 si
N

could be called the winding number of the cycle.

Theorem 1. Cycles of length l = 3 don't exist in the Andr�asfai graphs [1].

Chordless cycles are de�ned as usual: cycles where each edge of the graph that
is not in the cycle does not connect two vertices of the cycle. (In short: there is no
shortcut that allows to reach one vertex of the cycle from another along an edge of
the graph besides walking along the cycle.)

The following illustrations plot the cycle edges in red and the edges of the graph
that are not in cycles as dashed lines. The LCF notation and a multiplicity of the
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graphs (by rotations and/or ips) are noticed. The multiplicity is the full 2N if the
cycle is asymmetric, N if it contains a mirror line, or even smaller if it contains a
rotation axis of higher order.

Cycles that can be mapped on each other by rotations around the central N -fold
axes and/or ips are plotted only with one representative of the class.

Remark 3. The convention here is that the representative contains the vertex i = 0
\most eastwards" on the N -gon, and that the cycle starts with small positive strides.

Remark 4. (i) Cyclic rotation of the LCF strides si|meaning selecting a di�erent
start vertex, (ii) reading the si in backward order|meaning ipping it around the
diagonal through the start vertex, or (iii) ipping all their signs at the same time|
meaning walking it in the opposite direction|do not change the class of the cycle.

If multiplicities of cycles of odd length are summed up, sequence [2, A301771]
results.

2.1. n = 2, N = 5.

[1, 1, 1, 1, 1] � 1

3. n = 3, N = 8

1 cycle of length 4

[1, 4, -1, 4], �N=2
1 cycle of length 5

[1, 1, 1, 1, 4] �N

3.1. n = 4, N = 11. 2 cycles of length 4
[1, 4, -1, -4] �N

[1, -4, -4, -4] �N



4 RICHARD J. MATHAR

3 cycles of length 5

[1, 1, 1, 1, -4] �N

[1, 1, 1, 4, 4] �N

[1, 1, 4, 1, 4] �N

3.2. n = 5, N = 14. 5 cycles of length 4

[1, 4, -1, -4] �N

[1, -4, -4, 7] �2N

[1, -4, 7, -4] �N

[1, 7, -1, 7] �N

[4, 7, -4, 7] �N
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5 cycles of length 5

[1, 1, 1, 1, -4] �N

[1, 1, 1, 4, 7] �2N

[1, 1, 4, 1, 7] �2N

[1, 1, 4, 4, 4] �N

[1, 4, 1, 4, 4] �N

1 cycle of length 7

[4, 4, 4, 4, 4, 4, 4] �N=7

3.3. n = 6, N = 17. 8 cycles of length 4
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[1, 4, -1, -4] �N [1, -4, -4, 7] �2N

[1, -4, 7, -4] �N [1, -4, -7, -7] �2N

[1, 7, -1, 7] �N [1, -7, -4, -7] �N

[4, 7, -4, -7] �N [4, -7, -7, -7] �N
10 cycles of length 5
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[1, 1, 1, 1, -4] �N [1, 1, 1, 4, -7] �2N

[1, 1, 1, 7, 7] �N [1, 1, 4, 1, -7] �2N

[1, 1, 4, 4, 7] �2N [1, 1, 4, 7, 4] �N

[1, 1, 7, 1, 7] �N [1, 4, 1, 4, 7] �2N

[1, 4, 4, 1, 7] �N [1, 4, 4, 4, 4] �N

1 cycle of length 7

[4, 4, 4, 7, 4, 4, 7] �N

3.4. n = 7, N = 20. 14 cycles of length 4
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[1, 4, -1, -4] �N [1, -4, -4, 7] �N

[1, -4, 7, -4] �N [1, -4, -7, 10] �2N

[1, -4, 10, -7] �2N [1, 7, -1, -7] �N

[1, -7, -4, 10] �2N [1, -7, -7, -7] �N

[1, 10, -1, 10] �N=2 [4, 7, -4, -7] �N

[4, -7, -7, 10] �2N [4, -7, 10, -7] �N

[4, 10, -4, 10] �N=2 7, 10, -7, 10] �N=2
16 cycles of length 5
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[1, 1, 1, 1, -4] �N [1, 1, 1, 4, -7] �2N

[1, 1, 1, 7, 10] �2N [1, 1, 4, 1, -7] �2N

[1, 1, 4, 4, 10] �2N [1, 1, 4, 7, 7] �2N

[1, 1, 4, 10, 4] �N [1, 1, 7, 1, 10] �2N

[1, 1, 7, 4, 7] �N [1, 4, 1, 4, 10] �2N

[1, 4, 1, 7, 7] �N [1, 4, 4, 1, 10] �N

[1, 4, 4, 4, 7] �2N [1, 4, 4, 7, 4] �2N

[1, 4, 7, 1, 7] �2N [4, 4, 4, 4, 4] �N=5
4 cycles of length 7
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[4, 4, 4, 10, 4, 4, 10] �N

[4, 4, 7, 7, 4, 4, 10] �N

[4, 4, 7, 7, 4, 7, 7] �N

[4, 7, 4, 7, 4, 7, 7] �N

3.5. n = 8, N = 23. 20 cycles of length 4

[1, 4, -1, -4] �N [1, -4, -4, 7] �2N

[1, -4, 7, -4] �N [1, -4, -7, 10] �2N

[1, -4, 10, -7] �2N [1, -4, -10, -10] �2N

[1, 7, -1, -7] �N
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[1, -7, -4, 10] �2N

[1, -7, -7, -10] �2N [1, -7, -10, -7] �N

[1, 10, -1, -10] �N [1, -10, -4, -10] �N

[4, 7, -4, -7] �N [4, -7, -7, 10] �2N

[4, -7, 10, -7] �N [4, -7, -10, -10] �2N

[4, 10, -4, -10] �N [4, -10, -7, -10] �N

[7, 10, -7, -10] �N [7, -10, -10, -10] �N
26 cycles of length 5
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[1, 1, 1, 1, -4] �N [1, 1, 1, 4, -7] �2N

[1, 1, 1, 7, -10] �2N [1, 1, 1, 10, 10] �N

[1, 1, 4, 1, -7] �2N [1, 1, 4, 4, -10] �2N

[1, 1, 4, 7, 10] �2N [1, 1, 4, 10, 7] �2N

[1, 1, 4, -10, 4] �N [1, 1, 7, 1, -10] �2N

[1, 1, 7, 4, 10] �2N [1, 1, 7, 7, 7] �N
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[1, 1, 10, 1, 10] �N [1, 4, 1, 4, -10] �2N

[1, 4, 1, 7, 10] �2N [1, 4, 4, 1, -10] �N

[1, 4, 4, 4, 10] �2N [1, 4, 4, 7, 7] �2N

[1, 4, 4, 10, 4] �2N [1, 4, 7, 1, 10] �2N

[1, 4, 7, 4, 7] �2N [1, 4, 7, 7, 4] �N

[1, 4, 10, 1, 7] �2N [1, 7, 1, 7, 7] �N

[1, 7, 4, 4, 7] �N [4, 4, 4, 4, 7] �N
8 cycles of length 7
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[4, 4, 4, -10, 4, 4, -10] �N [4, 4, 7, 10, 4, 4, -10] �2N

[4, 4, 7, 10, 4, 7, 10] �2N [4, 4, 10, 7, 4, 7, 10] �N

[4, 7, 4, 10, 4, 7, 10] �2N [4, 7, 7, 7, 4, 7, 10] �2N

[4, 7, 7, 7, 7, 4, 10] �N [4, 7, 7, 7, 7, 7, 7] �N



CHORDLESS CYCLES IN THE n-ANDR�ASFAI GRAPH 15

n Nnl 4 5 7
3 8 1 1
4 11 2 3
5 14 5 5 1
6 17 8 10 1
7 20 14 16 4
8 23 20 26 8
9 26 30 38 20
10 29 40 57 38
11 32 55 79 76
12 35 70 111 133

Table 1. The number of classes of the chordless cycles of length l
in the n-Andr�asfai graph. Only graphs for n � 8 have been plotted
here. For n � 12, chordless cycles of length > 7 don't exist.

4. Overview

The number of classes of chordless cycles is summarized in Table 1, complete to
n � 12.

The fact that the number of cycles is strictly increasing as a function of n is
obvious: consider a chordless cycle in the Ant(n), cut one edge of the Hamiltonian
and insert a chain of 3 new vertices (and their edges) at this place to get an Ant(n+
1) graph. That construction obviously preserves the cycles, because none of the
additional edges and vertices violate the rules. Moreover, these new vertices increase
the number of ways to rotate these cycles. (Perhaps the fact that these 3 new
vertices could be covered in 23 = 8 ways by the existing cycles is also a strategy to
prove the conjectural C-�nite linear recurrence in the OEIS.)

Conjecture 1. Chordless cycles of length 6 don't exist.

Remark 5. 7 seems to be an upper limit of the lengths of the chordless cycles. A
heuristic cause for this is that each of the 7 vertices has 2 of its edges along the
cycle, and n-2 of its edges leading to avoided vertices (chords). So the number of
avoided vertices grows roughly like 7(n � 2)|certainly an overcount because some
of the avoided vertices of distinct vertices are the same|whereas the total number
of vertices grows only as N = 3n � 1: a starving of accessible vertices for longer
cycles.
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