login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A301746 Expansion of Product_{k>=1} (1 + x^k)^(sigma_0(k)^2). 2
1, 1, 4, 8, 19, 35, 82, 142, 291, 524, 989, 1724, 3174, 5393, 9517, 16064, 27464, 45481, 76357, 124402, 204497, 329559, 532316, 846564, 1349481, 2120814, 3335819, 5191522, 8070062, 12434176, 19136484, 29215324, 44531151, 67431985, 101882975, 153055897 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..10000

FORMULA

Conjecture: log(a(n)) ~ sqrt(n) * log(n)^(3/2) / (2*sqrt(6)). - Vaclav Kotesovec, Aug 29 2018

MATHEMATICA

nmax = 50; CoefficientList[Series[Product[(1+x^k)^(DivisorSigma[0, k]^2), {k, 1, nmax}], {x, 0, nmax}], x]

nmax = 50; s = 1 + x; Do[s *= Sum[Binomial[DivisorSigma[0, k]^2, j]*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]]; , {k, 2, nmax}]; CoefficientList[s, x] (* Vaclav Kotesovec, Aug 29 2018 *)

CROSSREFS

Cf. A000005, A035116, A107742, A301747.

Sequence in context: A274817 A130887 A049933 * A163318 A129362 A301981

Adjacent sequences:  A301743 A301744 A301745 * A301747 A301748 A301749

KEYWORD

nonn

AUTHOR

Vaclav Kotesovec, Mar 26 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 3 16:20 EST 2020. Contains 338906 sequences. (Running on oeis4.)