The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A301746 Expansion of Product_{k>=1} (1 + x^k)^(sigma_0(k)^2). 2
 1, 1, 4, 8, 19, 35, 82, 142, 291, 524, 989, 1724, 3174, 5393, 9517, 16064, 27464, 45481, 76357, 124402, 204497, 329559, 532316, 846564, 1349481, 2120814, 3335819, 5191522, 8070062, 12434176, 19136484, 29215324, 44531151, 67431985, 101882975, 153055897 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 FORMULA Conjecture: log(a(n)) ~ sqrt(n) * log(n)^(3/2) / (2*sqrt(6)). - Vaclav Kotesovec, Aug 29 2018 MATHEMATICA nmax = 50; CoefficientList[Series[Product[(1+x^k)^(DivisorSigma[0, k]^2), {k, 1, nmax}], {x, 0, nmax}], x] nmax = 50; s = 1 + x; Do[s *= Sum[Binomial[DivisorSigma[0, k]^2, j]*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]]; , {k, 2, nmax}]; CoefficientList[s, x] (* Vaclav Kotesovec, Aug 29 2018 *) CROSSREFS Cf. A000005, A035116, A107742, A301747. Sequence in context: A274817 A130887 A049933 * A163318 A129362 A301981 Adjacent sequences:  A301743 A301744 A301745 * A301747 A301748 A301749 KEYWORD nonn AUTHOR Vaclav Kotesovec, Mar 26 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 3 16:20 EST 2020. Contains 338906 sequences. (Running on oeis4.)