login
A301631
Numerator of population variance of n-th row of Pascal's triangle.
2
0, 0, 2, 1, 94, 122, 2372, 173, 50294, 56014, 983740, 266930, 18376812, 19624884, 333313544, 5500541, 5923399334, 6206260694, 103708093964, 27001710566, 1795265477444, 1860906681644, 30802090121144, 1988024895074, 524715115366844, 540193965134732, 8886200762228312
OFFSET
0,3
COMMENTS
Denominator of population variance of n-th row of Pascal's triangle is A191871(n+1) = A000265(n+1)^2.
LINKS
Simon Demers, Taylor's Law Holds for Finite OEIS Integer Sequences and Binomial Coefficients, American Statistician, online: 19 Jan 2018.
FORMULA
a(n) = numerator of binomial(2n,n)/(n+1) - 4^n/(n+1)^2.
a(n) = A000108(n)*A000265(n+1)^2 - A075101(n+1)^2/4.
EXAMPLE
The first few population variances are 0, 0, 2/9, 1, 94/25, 122/9, 2372/49, 173, 50294/81, 56014/25, 983740/121, 266930/9, 18376812/169, 19624884/49, 333313544/225, 5500541, 5923399334/289, ...
PROG
(Python)
from fractions import Fraction
from sympy import binomial
def A301631(n):
return (Fraction(int(binomial(2*n, n)))/(n+1) - Fraction(4**n)/(n+1)**2).numerator
(PARI) a(n) = numerator(binomial(2*n, n)/(n+1) - 4^n/(n+1)^2); \\ Altug Alkan, Mar 25 2018
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane and Chai Wah Wu, Mar 24 2018
STATUS
approved