login
A301629
G.f. A(x) satisfies: A(x) = 1/(1 + x*A(x)/(1 + x^2*A(x)^2/(1 + x^3*A(x)^3/(1 + x^4*A(x)^4/(1 + ...))))), a continued fraction.
2
1, -1, 2, -4, 8, -15, 23, -14, -95, 616, -2597, 9280, -29971, 89283, -245617, 614122, -1330205, 2121789, -134318, -18870272, 111955244, -481559262, 1783749762, -5976975892, 18406561660, -52025500982, 132347403714, -285820317372, 421120353772, 271625450178, -5772145145591
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Rogers-Ramanujan Continued Fraction
EXAMPLE
G.f. A(x) = 1 - x + 2*x^2 - 4*x^3 + 8*x^4 - 15*x^5 + 23*x^6 - 14*x^7 - 95*x^8 + 616*x^9 - 2597*x^10 + ...
log(A(x)) = -x + 3*x^2/2 - 7*x^3/3 + 15*x^4/4 - 26*x^5/5 + 15*x^6/6 + 153*x^7/7 - 1049*x^8/8 + ... + A291651(n)*x^n/n + ...
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Mar 24 2018
STATUS
approved