login
A301593
n can be represented the sum of a(n) distinct factorials. (If there is no such representation, a(n) = 0.)
4
1, 1, 2, 0, 0, 1, 2, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 3, 0, 0, 2, 3, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
1,3
FORMULA
a(n!) = 1, a(n!+1) = 2.
EXAMPLE
n | | a(n)
--+------------------------+-----
1 | 1! | 1
2 | 2! | 1
3 | 1! + 2! | 2
6 | 3! | 1
7 | 3! + 1! | 2
8 | 3! + 2! | 2
9 | 3! + 2! + 1! | 3
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 24 2018
STATUS
approved