This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A301554 Expansion of Product_{k>=1} ((1 + x^k)/(1 - x^k))^(sigma_0(k)). 20
 1, 2, 6, 14, 32, 66, 138, 266, 512, 948, 1730, 3074, 5408, 9306, 15854, 26594, 44150, 72378, 117620, 189074, 301516, 476518, 747514, 1163470, 1798920, 2762040, 4215194, 6393196, 9642596, 14462518, 21581386, 32040562, 47345342, 69635866, 101974722, 148692638 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Convolution of A006171 and A107742. LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 FORMULA G.f.: Product_{i>=1, j>=1} (1 + x^(i*j))/(1 - x^(i*j)). - Ilya Gutkovskiy, May 23 2018 Conjecture: log(a(n)) ~ Pi * sqrt(n*log(n)/2). - Vaclav Kotesovec, Sep 03 2018 MAPLE with(numtheory): seq(coeff(series(mul(((1+x^k)/(1-x^k))^sigma[0](k), k=1..n), x, n+1), x, n), n = 0 .. 35); # Muniru A Asiru, Oct 29 2018 MATHEMATICA nmax = 50; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^DivisorSigma[0, k], {k, 1, nmax}], {x, 0, nmax}], x] PROG (PARI) m=50; x='x+O('x^m); Vec(prod(k=1, m, prod(j=1, m+2, (1+x^(j*k))/(1-x^(j*k)) ))) \\ G. C. Greubel, Oct 29 2018 (MAGMA) m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((&*[(&*[(1 + x^(j*k))/(1-x^(j*k)): j in [1..(m+2)]]): k in [1..(m+2)]]))); // G. C. Greubel, Oct 29 2018 CROSSREFS Cf. A000005, A006171, A107742, A320237. Sequence in context: A327049 A035592 A327050 * A217941 A232434 A096238 Adjacent sequences:  A301551 A301552 A301553 * A301555 A301556 A301557 KEYWORD nonn AUTHOR Vaclav Kotesovec, Mar 23 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 11 23:44 EST 2019. Contains 329945 sequences. (Running on oeis4.)