OFFSET
0,2
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..10000
FORMULA
G.f.: Product_{i>=1, j>=1} (1 + x^(i*j))/(1 - x^(i*j)). - Ilya Gutkovskiy, May 23 2018
Conjecture: log(a(n)) ~ Pi * sqrt(n*log(n)/2). - Vaclav Kotesovec, Sep 03 2018
MAPLE
with(numtheory): seq(coeff(series(mul(((1+x^k)/(1-x^k))^sigma[0](k), k=1..n), x, n+1), x, n), n = 0 .. 35); # Muniru A Asiru, Oct 29 2018
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^DivisorSigma[0, k], {k, 1, nmax}], {x, 0, nmax}], x]
PROG
(PARI) m=50; x='x+O('x^m); Vec(prod(k=1, m, prod(j=1, m+2, (1+x^(j*k))/(1-x^(j*k)) ))) \\ G. C. Greubel, Oct 29 2018
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((&*[(&*[(1 + x^(j*k))/(1-x^(j*k)): j in [1..(m+2)]]): k in [1..(m+2)]]))); // G. C. Greubel, Oct 29 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Mar 23 2018
STATUS
approved