login
A301545
Expansion of Product_{k>=1} 1/(1 - x^k)^(sigma_7(k)).
10
1, 1, 130, 2318, 27216, 387594, 5560934, 70939556, 876220362, 10760122935, 128556693118, 1491396412267, 16958961282303, 189514843653171, 2079577812522100, 22430047600047542, 238222882236692332, 2493975995373397906, 25753455308417881148, 262500213585285366039
OFFSET
0,3
LINKS
FORMULA
a(n) ~ exp(3^(17/9) * Pi^(8/9) * (Zeta(9)/5)^(1/9) * n^(8/9) / 2^(7/3) - Zeta'(-7)/2) * (Zeta(9)/(15*Pi))^(241/4320) / (3 * 2^(241/1440) * n^(2401/4320)).
G.f.: exp(Sum_{k>=1} sigma_8(k)*x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Oct 26 2018
MATHEMATICA
nmax = 30; CoefficientList[Series[Product[1/(1-x^k)^DivisorSigma[7, k], {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
Sequence in context: A278658 A254924 A185584 * A229329 A262108 A250212
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Mar 23 2018
STATUS
approved