login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A301371 Maximum determinant of an n X n matrix with n copies of the numbers 1 .. n. 18
1, 1, 3, 18, 160, 2325, 41895, 961772, 27296640, 933251220 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

929587995 <= a(9) <= 934173632 (upper bound from Gasper's determinant theorem). The lower bound corresponds to a Latin square provided in A309985, but it is unknown whether a larger determinant value can be achieved by an unconstrained arrangement of the matrix entries. - Hugo Pfoertner, Aug 27 2019

Oleg Vlasii found a 9 X 9 matrix significantly exceeding the determinant value achievable by a Latin square. See example and links. - Hugo Pfoertner, Nov 04 2020

LINKS

Table of n, a(n) for n=0..9.

Ortwin Gasper, Hugo Pfoertner and Markus Sigg, An Upper Bound for the Determinant of a Matrix with given Entry Sum and Square Sum, JIPAM, Journal of Inequalities in Pure and Applied Mathematics, Volume 10, Issue 3, Article 63, 2008.

IBM Research, Large 9x9 determinant, Ponder This Challenge November 2019.

Markus Sigg, Gasper's determinant theorem, revisited, arXiv:1804.02897 [math.CO], 2018.

Oleg Vlasii, Determinant-OEIS-A301371-9, program and description, 4 Dec 2019.

Index entries for sequences related to maximal determinants

FORMULA

A328030(n) <= a(n) <= A328031(n). - Hugo Pfoertner, Nov 04 2019

EXAMPLE

Matrices with maximum determinants:

a(2) = 3:

  (2  1)

  (1  2)

a(3) = 18:

  (3  1  2)

  (2  3  1)

  (1  2  3)

a(4) = 160:

  (4  3  2  1)

  (1  4  3  2)

  (3  1  4  3)

  (2  2  1  4)

a(5) = 2325:

  (5  3  1  2  4)

  (2  5  4  1  3)

  (4  1  5  3  2)

  (3  4  2  5  1)

  (1  2  3  4  5)

a(6) = 41895:

  (6  1  4  2  3  5)

  (3  6  2  1  5  4)

  (4  5  6  3  2  1)

  (5  3  1  6  4  2)

  (1  2  5  4  6  3)

  (2  4  3  5  1  6)

a(7) = 961772:

  (7  2  3  5  1  4  6)

  (3  7  6  4  2  1  5)

  (2  1  7  6  4  5  3)

  (4  5  1  7  6  3  2)

  (6  3  5  1  7  2  4)

  (5  6  4  2  3  7  1)

  (1  4  2  3  5  6  7)

a(8) = 27296640:

  (8  8  3  5  4  3  4  1)

  (1  8  6  3  1  6  6  5)

  (5  3  8  1  7  6  4  2)

  (5  1  6  8  2  4  7  3)

  (1  5  2  7  8  6  4  3)

  (7  3  2  4  3  8  2  7)

  (5  4  2  2  6  2  8  7)

  (4  5  7  6  5  1  1  7)

a(n) is an upper bound for the determinant of an n X n Latin square. a(n) = A309985(n) for n <= 7. a(8) > A309985(8). - Hugo Pfoertner, Aug 26 2019

From Hugo Pfoertner, 2020 Nov 04: (Start)

a(9) = 933251220, achieved by a Non-Latin square:

  (9  5  5  3  3  2  2  8  8)

  (4  9  2  6  7  5  3  1  8)

  (4  7  9  2  1  8  6  3  5)

  (6  3  7  9  4  1  8  2  5)

  (6  2  8  5  9  7  1  4  3)

  (7  4  1  8  2  9  5  6  3)

  (7  6  3  1  8  4  9  5  2)

  (1  8  6  7  5  3  4  9  2)

  (1  1  4  4  6  6  7  7  9)

found by Oleg Vlasii as an answer to the IBM Ponder This Challenge November 2019. See links. (End)

CROSSREFS

Cf. A085000, A309985, A328030, A328031.

Sequence in context: A052182 A309985 A328030 * A115415 A065058 A032031

Adjacent sequences:  A301368 A301369 A301370 * A301372 A301373 A301374

KEYWORD

nonn,hard,more

AUTHOR

Hugo Pfoertner, Mar 21 2018

EXTENSIONS

a(8) from Hugo Pfoertner, Aug 26 2019

a(9) from Hugo Pfoertner, Nov 04 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 8 04:03 EST 2021. Contains 341938 sequences. (Running on oeis4.)